Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  muscle damage
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The purpose of this study was to determine: (1) whether damage to liver and skeletal muscles occurs during a 100 km run; (2) whether the metabolic response to extreme exertion is related to the age or running speed of the participant; (3) whether it is possible to determine the optimal running speed and distance for long-distance runners’ health by examining biochemical parameters in venous blood. Fourteen experienced male amateur ultra-marathon runners, divided into two age groups, took part in a 100 km run. Blood samples for liver and skeletal muscle damage indexes were collected from the ulnar vein just before the run, after 25, 50, 75 and 100 km, and 24 hours after termination of the run. A considerable increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was observed with the distance covered (p < 0.05), which continued during recovery. An increase in the mean values of lactate dehydrogenase (LDH), creatine kinase (CK) and C-reactive protein (CRP) (p < 0.05) was observed with each sequential course. The biggest differences between the age groups were found for the activity of liver enzymes and LDH after completing 75 km as well as after 24 hours of recovery. It can be concluded that the response to extreme exertion deteriorates with age in terms of the active movement apparatus.
EN
The main purpose of this study was to investigate how extreme physical strain influences cytokine response and oxidative stress markers by examining professional judo athletes during a typical 3-day judo training session (randori combat training).Creatine kinase (CK) activity, a marker of muscle damage, was considerably elevated immediately after randori training. Pro- (IL-1β and TNF-α) and anti-inflammatory (IL-6 and IL-10) cytokines were also increased. The strongest effect was seen in IL-1β concentration, which correlated with CK activity (r = 0.49, P < 0.05). All the observed cytokines returned to baseline (IL-1β) or even dropped below initial levels (TNF-α, IL-6 and IL-10) 12 h after completing the training. Lipid peroxides (LPO), a marker of reactive oxygen species, also decreased below their initial values. LPO levels correlated directly with IL-1β, TNF-α, IL-6 and IL-10.This study is the first to evaluate the effect of a 3-day judo training session on muscle damage by evaluating the release of pro- and anti-inflammatory cytokines and markers of oxidative stress. It is also the first to demonstrate significant changes in the blood cytokine profile that correlate with lipid peroxide levels and muscle damage.
EN
Purpose. To determine if the complement system is activated following strenuous eccentrically-biased exercise. Secondly, to determine if complement activation is attenuated (repeated bout effect) following a second bout of the same exercise. Basic procedures. Healthy, active but untrained males performed 2 × 60 min bouts of downhill running, 14 days apart. Samples were taken pre, immediately post (IP), then every hour for twelve hours, and at 24, 48, 72, 96, 120 and 144 h post exercise. Concentrations of C1est, C4, and circulating immune complexes (CIC's) were determined using standardised nephelometery. C6 was determined using radial immunodifusion. The variables were analysed using a repeated measures ANOVA, with significance set at p < 0.05. Main findings. A significant (p < 0.01) run effect was observed for C1est, C4, C6 and CIC's with the concentrations elevated after run 2 compared with run 1. C1est and C4 exhibited significant time effects (p < 0.001). Conclusions. The complement system is activated following a strenuous bout of downhill running. Complement proteins and circulating immune complexes do not exhibit the same traditional ‘repeated bout effect’ as many other common markers of muscle damage/inflammation. The increase in complement proteins following the second bout may indicate enhanced innate immune function and/or an amplification of the immune response to tissue damage through interaction with the adaptive immune system.
EN
According to cytokine overtraining theory, skeletal muscle injuries are related to systemic inflammatory reaction. In response to inflammation, cells rapidly produce a series of proteins known as heat shock proteins (HSPs).These are considered to be molecular chaperones which play a universal role in maintaining cellular homeostasis. Among the subset of stress-responsive proteins, HSP27 and HSP70 are considered to be a new approach to monitoring exercise training and adaptive mechanisms. The study was designed to demonstrate the effect of sport training on changes in pro-inflammatory cytokines and HSPs, and their relation with muscle damage and body composition. Six elite canoeists (19.8 ±2.9 yr) were observed during preparatory training period (March) at the 1st, the 4th and after 7 days of the conditioning camp, and then after 3 days of recovery. The canoeing training did not induce muscle damage, decreased in IL-1β and HSP27, increased in TNFα and HSP70 concentrations. The highest changes in TNFα and HSP70 were observed 3 days after conditioning camp (during recovery) compared to initial level (the 1st day of conditioning camp). TNFα correlated with HSP27 (r = –0.563; P < 0.01) and HSP70 (r = 0.651; P < 0.001). Any significant changes in body composition were not observed. In conclusion, we could say that typical canoeing training improves cytokines and HSPs release, however, the changes are not related to muscle damage.
EN
The aim of the study was to examine whether self-selected walking speed during downhill treadmill walking by older adults would result in muscle injury and changes in physiological responses during level walking. Twenty-six participants (age: 67 ± 4 yrs; height: 1.69 ± 0.09 m; body mass: 74.9 ± 13.1kg) were assigned to level (n = 11, 30 min, 0%) or downhill walking (n=15, 30 min, -10%) at a self-selected walking speed. Self-selected walking speed and exercise intensity were similar for both groups (level: 4.2±0.4 km·hr-1, 42±6% VO2max; downhill: 4.6±0.6 km·hr-1, 44±15% VO2max). After 48-hours, downhill walking had reduced maximal voluntary isometric force of the m. quadriceps femoris (-15%, P<0.001), indicative of muscle injury, but no changes were observed for walking economy, minute ventilation, heart rate and respiratory exchange ratio during level walking. For older adults, downhill walking at a selfselected walking speed causes muscle injury without any detrimental effect on walking economy. Regular downhill walking at a self-selected walking speed by older adults is an eccentric endurance activity that may have the potential to improve cardiovascular fitness and muscle strength.
EN
The purpose of this study was to determine if physical activity of different intensity has an effect on reduction of delayed onset muscle soreness. Eighty women divided into two groups participated in the study. Subjects from Group 1 participated in the training of upper libs, whereas subjects from group 2 – in the training of lower limbs. Tests of power of upper limbs – the active overhang on the bar (Gr. 1) and power of lower limbs – the vertical jump test (Gr. 2), visual analog scale of pain (VAS) and the International Physical Activity Questionnaire (IPAQ) were used as investigative tools. The majority of studied women were characterized by the high level of physical activity. Physical activity level had strong positive correlation (r = 0.54; p < 0.001) with the reduction of pain. Taking into account the partition according to the kind of physical activity, there was observed some significant correlation between the diminution of delayed onset muscle soreness and the level of moderate activity and walking (relocating). Physical activity level positively correlated with the reduction of delayed onset muscle soreness. Moderate physical activity and walking proved to be the most beneficial from the reduction of delayed onset muscle soreness point of view.
EN
The study investigated the accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory, metabolic and neuromuscular responses to low-intensity exercise performed hours later. Fourteen young men cycled at low-intensity (~60 rpm at 50% maximal oxygen uptake) for 10 min before, and 12 h after: concentric-biased, single-leg cycling exercise (CON) (performed ~19:30 h) and eccentric-biased, double-leg knee extension exercise (ECC) (~06:30 h the following morning). Respiratory measures were sampled breath-by-breath, with oxidation values derived from stoichiometry equations. Knee extensor neuromuscular function was assessed before and after CON and ECC. Cardiorespiratory responses during low-intensity cycling were unchanged by accumulative CON and ECC. The RER was lower during low-intensity exercise 12 h after CON and ECC (0.88 ± 0.08), when compared to baseline (0.92 ± 0.09; p = 0.02). Fat oxidation increased from baseline (0.24 ± 0.2 g·min1) to 12 h after CON and ECC (0.39 ± 0.2 g·min1; p = 0.01). Carbohydrate oxidation decreased from baseline (1.59 ± 0.4 g·min-1) to 12 h after CON and ECC (1.36 ± 0.4 g·min1; p = 0.03). These were accompanied by knee extensor force loss (right leg: -11.6%, p < 0.001; left leg: -10.6%, p = 0.02) and muscle soreness (right leg: 2.5 ± 0.9, p < 0.0001; left leg: 2.3 ± 1.2, p < 0.01). Subsequent concentric-biased and eccentric-biased exercise led to increased fat oxidation and decreased carbohydrate oxidation, without impairing cardiorespiration, during low-intensity cycling. An accumulation of fatiguing and damaging exercise increases fat utilisation during low intensity exercise performed as little as 12 h later.
EN
The purpose of this study was to compare the effects of sprint interval training (SIT) and continuous endurance training (CET) on selected anthropometric, aerobic, and anaerobic performance indices as well as the blood lipid profile, inflammatory and muscle damage markers in healthy young males. Fifteen recreationally active male volunteers (age: 21.7 ±2.2 years, body mass: 83.0 ±8.0 kg, body height: 1.82 ±0.05 m) were divided into two groups according to their initial VO2max levels. Training programs were conducted 3 times per week for 7 weeks. The SIT program consisted of 4-6 Wingate anaerobic sprints with a 4.5 min recovery, while CET consisted of 30-50 min cycling at 60% VO2max. Biochemical, anthropometric and fitness assessments were performed both pre and post-intervention. Significant improvements in VO2max, anaerobic power and capacity, and VO2 utilization during the submaximal workout and significant decreases in body fat and in waist circumference after the intervention occurred in both SIT and CET groups. Significantly greater gross efficiency was measured in the CET group. No differences in the lipid profile or serum levels of inflammatory, myocardial and skeletal muscle damage markers were observed after the training period. The study results agree with the effectiveness of a 30 s all-out training program with a reduced time commitment for anthropometric, aerobic and anaerobic adaptation and eliminate doubts about its safety as a model.
EN
Whole-body vibration (WBV) exercise is an alternative, popular and easy exercise that can be followed by general public. Therefore, the aim of the present study was to investigate the influence of acute and chronic WBV exercise on health-related parameters. Twenty-eight women were allocated into a control group (n=11, mean ±SEM: age, 43.5 ±1.5 yr; body mass, 66.1 ±3.1 kg; height, 160.6 ±1.5 cm) and a vibration group (n=17, mean ±SEM: age, 44.0 ±1.0 yr; body mass, 67.1 ±2.2 kg; height, 162.5 ±1.5 cm). After baseline assessments, participants of the experimental group performed WBV training 3 times/week for 8 weeks. Before and after the chronic WBV exercise, the participants of the vibration group performed one session of acute WBV exercise. Blood chemistry measurements (hematology, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, glucose, insulin, triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B and lipoprotein, thiobarbituric-acid reactive substances, protein carbonyls, total antioxidant capacity, uric acid, albumin and bilirubin) were assessed pre-exercise and post-exercise at the first and eighth week of WBV exercise in both control and vibration groups. The results failed to support any effect of both acute and chronic WBV exercise on biochemical health-related parameters. However, it seems that WBV exercise is a safe way of training without a negative impact on muscle and liver functionality.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.