Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  microwave saturation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 3
449-453
EN
Paramagnetic centers in the two exemplary synthetic and natural dental biocompatible materials applied in implantology were examined by the use of an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra were measured in the range of microwave power 2.2–70 mW. The aims of this work were to compare paramagnetic centers concentrations in different dental biocompatible materials and to determine the effect of microwave power on parameters of their EPR spectra. It is the very first and innovatory examination of paramagnetic centers in these materials. It was pointed out that paramagnetic centers existed in both natural (~1018 spin/g) and synthetic (~1019 spin/g) dental biocompatible materials, but the lower free radical concentration characterized the natural sample. Continuous microwave saturation of EPR spectra indicated that faster spin-lattice relaxation processes existed in synthetic dental biocompatible materials than in natural material. Linewidths (ΔBpp) of the EPR spectra of the natural dental material slightly increased for the higher microwave powers. Such effect was not observed for the synthetic material. The broad EPR lines (ΔBpp): 2.4 mT, 3.9 mT, were measured for the natural and synthetic dental materials, respectively. Probably strong dipolar interactions between paramagnetic centers in the studied samples may be responsible for their line broadening. EPR spectroscopy is the useful experimental method in the examination of paramagnetic centers in dental biocompatible materials.
EN
Paramagnetic centers in DOPA-melanin and complexes of DOPA-melanin with netilmicin and Cu(II) were studied by the use of an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. Measurements of continuous microwave saturation of EPR spectra at temperatures: 125 K, 175 K, 225 K, 275 K, were performed. Homogeneous broadening of all the examined EPR spectra was observed. EPR spectra of DOPA-melanin-Cu(II) complexes saturated at higher microwave powers than the others tested melanin samples. Fast spin-lattice relaxation exists in DOPA-melanin-Cu(II) complexes. Slow spin-lattice relaxation processes exist in melanin's paramagnetic centers of DOPA-melanin and its complexes with netilmicin, and its complexes with both netilimicin and Cu(II). EPR spectra of all the tested samples saturated at higher microwave powers with increasing of the measuring temperature. Faster spin-lattice relaxation processes occurs in DOPA-melanin and its complexes with netilmicin and Cu(II) at higher temperature.
|
|
issue 3
439-442
EN
Free radicals formed during thermal sterilization of eucerinum anhydricum – the pharmaceutical base were examined by an X-band (9.3 GHz) spectrometer. Eucerinum anhydricum was sterilized at different physical conditions according to the Polish Pharmacopeia norms. The samples were heated at temperatures: 160°C (120 min), 170°C (60 min), and 180°C (30 min). The aim of this study is to compare free radical concentration and effect of microwave power on EPR spectra of eucerinum anhydricum base thermally sterilized at different temperatures and periods of time. The effect of time storage on the free radicals in the heated samples was tested. Free radical concentrations in the sample stored 15 min strongly decreased with the increasing of sterilization temperature, probably as the result of recombination. Storage caused strong decrease of free radical concentrations in the samples, probably as the result of interactions with oxygen. It was observed to be independent of sterilization conditions from 2 days of storage and longer. Because of the lowest free radical concentration, for eucerinum anhydricum thermal sterilization at 180°C for 30 min is recommended. The sterilized samples should be stored at inert atmosphere without oxygen molecules. Fast spin-lattice relaxation processes existed in sterilized eucerinum anhydricum. The character of changes of amplitudes and linewidths of EPR lines with increasing of microwave power was the same for different storage times. The parameters of thermal sterilization and storage time influenced free radical concentration in eucerinum anhydricum, but magnetic spin-lattice interactions were unchanged. The usefulness of EPR spectroscopy in optimization of thermal sterilization process of eucerinum anhydricum was confirmed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.