Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 14

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  miRNA
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Arabidopsis microRNA162 (miRNA162) level regulation was studied under abiotic stresses, such as drought and salinity. The TaqMan® microRNA assay proved that A. thaliana miRNA162 level was elevated under these stresses, confirming its salt and drought responsiveness. The promoter region analyses of A. thaliana miRNA162a and b genes (MIR162a and MIR162b) identified numerous salinity and drought responsive elements. However, our results indicated that Arabidopsis MIR162a was presumably the main locus responsible for the mature ath-miRNA162 accumulation under the stresses tested, and the MIR162b was generally rather weakly expressed, both in control and under the stress conditions. The MIR162a structure was confirmed to be complex and the pri-miRNA162a hairpin structure was shown to span an alternative exon and an intron. The MIR162a transcription generated a few pri-miRNA162a splicing isoforms that could be functional and non-functional. Upon drought and salinity stresses, the regulation of the pri-miRNA162a alternative splicing pattern revealed an increase of a functional pri-miR162a isoform and a preferential distal polyA site selection under the stress conditions. Apart from the potential transcriptional regulation of the miRNA genes (MIRs) expression, the data obtained point to an essential role of posttranscriptional regulation of Arabidopsis microRNA162 level.
|
2015
|
vol. 62
|
issue 1
77-82
EN
Dysregulation of miRNA is widely involved in human cancers, including hepatocellular carcinoma (HCC). Array data for miRNAs indicated that miR-331-3p might be one of the disorderly expressed miRNAs in HCC cell lines, but the function of miR-331-3p in HCC remains unclear. In this study, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that miR-331-3p was up-regulated in HepG2.2.15 cells, Ad-HBV-HepG2 cells and pCH9/3091transfected SMMC7721 cells compared with their control group, respectively. miRNA target prediction software was used, and VHL was found to be one of the target genes of miR-331-3p. qRT-PCR and western blot analysis indicated VHL expression was decreased when miR-331-3p was over-expressed and increased when miR-331-3p was inhibited in SMMC7721 cells. The luciferase reporter activity was inhibited in SMMC7721 cells when co-transfected with miR-331-3p expression vector and VHL 3'-UTR wild type vector and increased in HepG2.2.15 transfected with miR-331-3p inhibitor compared to its control group respectively. When co-transfected with miR-331-3p expression vector and VHL 3'-UTR mutated type vector in SMMC7721 cells the luciferase reporter activity was recovered. All of these results show that HBV up-regulated miR-331-3p expression in HCC cell lines and miR-331-3p could inhibit VHL expression by directly targeting its 3'-UTR. This provided useful information in exploring the mechanism of HCC induced by HBV infection.
EN
Flower structure in grasses is very unique. There are no petals or sepals like in eudicots but instead flowers develop bract-like structures - palea and lemma. Reproductive organs are enclosed by round lodicule that not only protects reproductive organs but also plays an important role during flower opening. The first genetic model for floral organ development was proposed 25 years ago and it was based on the research on model eudicots. Since then, studies have been carried out to answer the question whether this model could be applicable in the case of monocots. Genes from all classes found in eudicots have been also identified in genomes of such monocots like rice, maize or barley. What's more, it seems that miRNA-mediated regulation of floral organ genes that was observed in the case of Arabidopsis thaliana also takes place in monocots. MiRNA172, miRNA159, miRNA171 and miRNA396 regulate expression of floral organ identity genes in barley, rice and maize, affecting various features of the flower structure, ranging from formation of lemma and palea to the development of reproductive organs. A model of floral development in grasses and its genetic regulation is not yet fully characterized. Further studies on both, the model eudicots and grasses, are needed to unravel this topic. This review provides general overview of genetic model of flower organ identity specification in monocots and it's miRNA-mediated regulation.
EN
MicroRNAs (miRNA) are non-coding RNAs, the majority of which are 22 nucleotide in size. They regulate gene transcription and control more than 50% of the mammalian genome. Although functional significance and targets of several miRNAs are yet to be identified, they may be regarded as controller of cellular physiology and function. Through such regulation they play vital roles in normal and diseased states. In the context of diabetes and chronic diabetic complications, recent research has identified alterations of a significant number of miRNAs. However, in a complex chronic disease like diabetes, multiple transcripts may also change in a temporal fashion depending on the disease progression and activation of counter-regulatory mechanisms. Hence, it is also possible that some miRNA changes may not be causally related to the disease pathogenesis and represent epiphenomena. To date, over 500 studies have addressed the role of miRNAs in the pathogenesis of type 1 and type 2 diabetes and chronic diabetic complications. Majority of the altered miRNAs appear to have pathogenetic roles. In this review, we have tried to identify alterations of specific miRNAs and the pathways they may regulate. We have also tried to identify whether some of these miRNA alterations may form basis of potential treatments
|
2016
|
vol. 63
|
issue 4
631-643
EN
As a result of thousands of years of agriculture, humans had created many crop varieties that became the basis of our daily diet, animal feed and also carry industrial application. Soybean is one of the most important crops worldwide and because of its high economic value the demand for soybean products is constantly growing. In Europe, due to unfavorable climate conditions, soybean cultivation is restricted and we are forced to rely on imported plant material. The development of agriculture requires continuous improvements in quality and yield of crop varieties under changing or adverse conditions, namely stresses. To achieve this goal we need to recognize and understand the molecular dependencies underlying plant stress responses. With the advent of new technologies in studies of plant transcriptomes and proteomes, now we have the tools necessary for fast and precise elucidation of desirable crop traits. Here, we present an overview of high-throughput techniques used to analyze soybean responses to different abiotic (drought, flooding, cold stress, salinity, phosphate deficiency) and biotic (infections by F. oxysporum, cyst nematode, SMV) stress conditions at the level of the transcriptome (mRNAs and miRNAs) and the proteome.
6
Publication available in full text mode
Content available

Regulatory RNAs in Planarians

88%
|
2016
|
vol. 63
|
issue 4
681-686
EN
The full scope of regulatory RNA evolution and function in epigenetic processes is still not well understood. The development of planarian flatworms to be used as a simple model organism for research has shown a great potential to address gaps in the knowledge in this field of study. The genomes of planarians encode a wide array of regulatory RNAs that function in gene regulation. Here, we review planarians as a suitable model organism for the identification and function of regulatory RNAs.
EN
MicroRNAs are short molecules of 21-24 nt in length. They are present in all eukaryotic organisms and regulate gene expression by guiding posttranscriptional silencing of mRNAs. In plants, they are key players in signal transduction, growth and development, and in response to abiotic and biotic stresses. Barley (Hordeum vulgare) is an economically important monocotyledonous crop plant. Drought is the world's main cause of loss in cereal production. We have constructed a high-throughput Real-Time RT-qPCR platform for parallel determination of 159 barley primary microRNAs' levels. The platform was tested for two drought-and-rehydration-treated barley genotypes (Rolap and Sebastian). We have determined changes in the expression of primary microRNAs responding to mild drought, severe drought, and rehydration. Based on the results obtained, we conclude that alteration in the primary microRNA expression is relative to the stress's intensity. Mild drought and rehydration mostly decrease the pri-miRNA levels in both of the tested genotypes. Severe drought mainly induces the primary microRNA expression. The main difference between the genotypes tested was a much-stronger induction of pri-miRNAs in Rolap encountering severe drought. The primary microRNAs respond dynamically to mild drought, severe drought, and rehydration treatments. We propose that some of the individual pri-miRNAs could be used as drought stress or rehydration markers. The usage of the platform in biotechnology is also postulated.
EN
Camptothecin (CPT), an alkaloid natural product, extracted from Camptotheca acuminata bark, has been reported to have potential antitumor activity in diverse cancers. MicroRNAs (MiRNAs) are a class of short, non-coding RNAs that plays a crucial role in the normal physiology by attenuating translation. Here, we showed that the CPT modulates the expression of miRNAs in hepatocellular carcinoma cells (HCC). Microarray analysis reveals that CPT modulates the expression of as many as 39 miRNAs in HCC cells (Huh7), 27 miRNAs were downregulated whereas 12 miRNAs were upregulated. miR-16 is the key miRNA upregulated by CPT and targets key prosurvival proteins (MMP-2, MMP-9 and cyclin D1). Our results demonstrate that CPT is inhibiting cell viability of HCC cells significantly when compared with the untreated cells. Wound healing and colony formation assay confirm inhibition of cell migration and clonogenic property of Huh7 cells respectively, upon the dose-dependent treatment of CPT. Furthermore, the Boyden chamber assay analysis revealed a significant inhibition of number of invasive cells in CPT treated cells with comparison to untreated Huh7 cells. Mechanistically, CPT upregulates miR-16 expression which targets MMP-2, MMP-9, cyclin D1 downregulation and subsequently upregulates the expression of E-cadherin, TIMP1, p21, and p27, thereby inhibits cell migration, invasion and clonogenic property of HCC cells. In summary, CPT treatment in Huh7 cells decreases cell viability and upregulates miR-16 expression, which results in inhibition of cell migration, invasion and clonogenic property of cells, by decreasing MMP-2, MMP-9, cyclin D1 and increasing the expression of cell cycle-regulated proteins p21 and p27.
EN
Several kinds of microRNA have been studied as prospective biomarkers in the pursuit of better diagnostics tests for infectious diseases. miRNA which is processed mostly from introns plays a significant role in gene expression involving cell differentiation, proliferation, apoptosis, metabolism, and immune response. Many miRNA mimics or inhibitors are in their clinical phases and advancement in RNA interference will make miRNA become effective tools in the treatment of human infectious diseases. miRNA has been discovered to be largely involved in viral gene regulation as well as the change of host cellular genes during viral infections. The role of miRNA in most bacterial infections has not been thoroughly explored compared to viral infections. Recent studies have highlighted the vital role of host immunity against bacterial infections. miRNA that is sequenced due to fungal infections bear a close similarity to those produced in response to allergy or inflammation. Host-derived miRNA plays a vital role in immune regulation; inflammatory responses may be enhanced or inhibited by its upregulation or downregulation. Here, we outlined the involvement of microRNA in viral, fungal, and bacterial infections and the immune response associated. Further studies on these, will provide advanced diagnostic and treatment protocols for infectious diseases.
|
|
issue 1
EN
microRNAs (miRNAs) are a class of non-coding RNA which suppress target gene expression. miRNAs are involved in most physiological and pathological process, including carcinogenesis. miRNA expression profiles help to improve lung cancer diagnosis, classification and prognostic information. Tumor suppressive and oncogenic miRNAs have been discovered and their functions have been investigated. Emphasis is placed on the development of miRNA-based methods for lung cancer diagnosis and therapy and future directions are proposed.
PL
Auksyna wpływa na większość procesów wzrostu i rozwoju roślin. Szlak transdukcji sygnału auksyn tworzony jest przez komponenty białkowe, z których kluczowe są: receptory z rodziny TAAR (TIR1 oraz AFB1-3), represory odpowiedzi na auksynę AUX/IAA i czynniki transkrypcyjne AUXIN RESPONSE FACTOR (ARF). Aktywność genów kodujących niektóre elementy tego szlaku jest regulowana przez niskocząsteczkowe regulatorowe RNA, miRNA (micro RNA), i siRNA (short-interfering RNA), endogenne, niekodujące małe RNA (small RNA, sRNA) o długości 20-25 nukleotydów, różniące się sposobem powstawania (prekursorowymi molekułami i szlakami syntezy) oraz funkcją. Sekwencje TIR1 i AFB1-3 zawierają miejsce docelowe dla miR393 i drugorzędowe dla siTAAR. Transkrypt genu IAA28 jest celem dla miR847. Ekspresja genów: ARF10, ARF16 i ARF17 podlega bezpośredniej kontroli przez miR160, ARF6 i ARF8 przez miR167, natomiast ekspresja ARF2-4 podlega regulacji przez miR390 za pośrednictwem ta-siRNA pochodzącego z locus TAS3. sRNA wpływają przede wszystkim na lokalizację tkankową i czasową opisanych elementów szlaku auksynowego.
EN
Auxin affects almost all of the growth and development processes in plants. The auxin signal transduction pathway involves a number of proteins, among which the key elements are: TAAR auxin receptors (TIR1 and AFB1-3), AUX/IAA auxin response repressors and Auxin Response Factor (ARF) transcription factors. The activity of genes encoding some components of this pathway is affected by regulatory low-molecular-weight RNAs - miRNA (micro RNA) and siRNA (short-interfering RNA) - endogenous non-coding 20-25 nucleotides long small RNA (sRNA), differing in the way of formation (precursor molecules and biosynthesis pathways) and function. TIR1 and AFB1-3 contain miR393 target sequence and siTAAR secondary target site. IAA28 transcripts are targeted by miR847. Expression of ARF10, ARF16 i ARF17 is directly controlled by miR160, ARF6 and ARF8 by miR167, and ARF2-4 indirectly by miR390 through TAS3-derived ta-siRNAs. sRNAs influence primarily the tissue and temporal localization of described components of the auxin signal transduction pathway.
|
2015
|
vol. 62
|
issue 3
353-365
EN
Glioblastoma multiforme (GBM) is the most common type of malignant gliomas, characterized by genetic instability, intratumoral histopathological variability and unpredictable clinical behavior. Disappointing results in the treatment of gliomas with surgery, radiation and chemotherapy have fuelled a search for a new therapeutic targets and treatment modalities. A novel small non-coding RNA molecules, microRNAs (miRNAs), appear to represent one of the most attractive target molecules contributing to the pathogenesis of various types of tumors. They play crucial roles in tumorigenesis, angiogenesis, invasion and apoptosis. Some miRNAs are also associated with clinical outcome and chemo- and radiotherapy resistance. Moreover, miRNA have the potential to affect the responses to molecular-targeted therapies and they also might be associated with cancer stem cell properties, affecting tumor maintenance and progression. The expression profiles of miRNAs are also useful for subclassification of GBM, what underscores the heterogeneity of diseases that all share the same WHO histopathological grade. Importantly, molecular subtypes of GBM appear to correlate with clinical phenotypes, tumor characteristic and treatment outcomes. miRNAs are then biological markers with possible diagnostic and prognostic potential. They could also serve as one of the promising treatment targets in human glioblastoma.
|
2012
|
vol. 59
|
issue 4
467-474
EN
microRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression by targeting specific mRNAs. microRNAs play a role in several physiological processes in the cell, including migration, proliferation, differentiation and apoptosis. Apart from their role in regular metabolism, abnormal profiles of miRNA expression accompany cancer transformation, including colorectal cancer (CRC) metastasis. microRNAs may play a role in each phase of CRC metastasis including angiogenesis, invasion, intravasation, circulation, extravasation and metastatic colonization. microRNA levels may serve as a predictive CRC marker, which was confirmed by the serum level of miR-29a targeting KLF4, a marker of cell stemness, and the plasma level of miR-221 down-regulating c-Kit, Stat5A and ETS1, which are signal transducers and transcription factor, respectively. In turn, the level of miR-143 in CRC cells decreasing the amount of MACC1 (metastasis-associated in colon cancer-1) and oncogenic KRAS protein, may be utilized as a prognostic marker. Also, single nucleotide polymorphisms of genes encoding miRNAs, including miR-423 and miR-608, which correlate with tumor recurrence, may be useful as diagnostic, prognostic and predictive indicators in CRC metastasis. Pre-miR-34a and pre-miR-199a decreased the level of Axl, a tyrosine-protein kinase receptor, so they can be considered as drugs in antimetastatic therapy. On the other hand, miR-222 targeting ADAM-17, a disintegrin and metalloproteinase, and miR-328 interacting with ABCG2, an ABC transporter, may overcome drug resistance of cancer cells. microRNAs may be considered in wide-range application to facilitate CRC metastasis diagnosis, prognosis, prediction and therapy, however, further clinical, epidemiological and in vitro studies should be conducted to verify their utility.
PL
Glejak wielopostaciowy klasyfikowany jest do grupy najbardziej złośliwych glejaków o IV stopniu złośliwości ze szczególnie niekorzystnymi prognozami związanymi z jego leczeniem. Pojawienie się u pacjenta szybko postępujących objawów zarówno psychiatrycznych, jak i neurologicznych powinno być zawsze dokładnie zbadane. Artykuł ma na celu zebranie oraz podsumowanie aktualnej wiedzy na temat glejaka oraz zaprezentowanie możliwych perspektyw rozwoju metod diagnostyczno-leczniczych. Rozwój glejaka ma zazwyczaj związek z mutacjami w genach EGFR, PTEN, IDH1 lub p53. Do użytecznych narzędzi diagnostycznych należą m.in. badanie MRI, analiza metylacji promotora genu MGMT oraz immunohistochemiczne oznacznie GFAP. W leczeniu glejaków wielopostaciowych najczęściej stosowanym schematem jest protokół Stuppa bazujący na połączeniu radioterapii z chemioterapią temozolomidem. Niemniej jednak, dalsze możliwości leczenia są limitowane. Zintegrowane wysiłki naukowców są ukierunkowane na poszukiwanie nowych strategii leczenia przy użyciu m.in. teraapii CAR-T, nanocząteczek, przeciwciał monoklonalnych, miRNA, siRNA oraz inhibitorów proteasomów
EN
Glioblastoma is the most severe IV-class glioma and therefore the prognosis for patients remains poor despite some improvement in the treatment area. The neurological or psychiatric symptoms especially fast-developing ones should be fully investigated. This article aims to summarize actual knowledge of glioblastoma and present future perspectives. The underlying causes are usually associated with mutations of EGFR, PTEN, IDH1, p53 genes. The MRI scan, MGMT promoter methylation status, GFAP immunohistochemical detection and Karnofsky performance status are valuable diagnostic tools and some other potential biomarkers with high specificity are proposed. The standard of care is surgery and Stupp protocol which is the combination of radiotherapy and chemotherapy with temozolomide. Nevertheless, after remission the treatment possibilities are limited. Many efforts have been devoted to elaborate novel therapeutic strategies using e.g. CAR-T cells, nanoparticles, monoclonal antibodies, miRNA, siRNA or proteasome inhibitors.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.