Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 173

Number of results on page
first rewind previous Page / 9 next fast forward last

Search results

Search:
in the keywords:  mechanical properties
help Sort By:

help Limit search:
first rewind previous Page / 9 next fast forward last
EN
This article focuses on preliminary investigations of the manufacture of nonwoven chitosan from a 38-mm chitosan staple fibre and fibres containing silver nanoparticles. The nonwoven chitosan is built of several needle-punched layers of fleece, with a lengthwise arrangement of chitosan fibres. Estimated were mechanical and sorption properties, apparent density, thickness and air permeability of the nonwoven chitosan.
3
Content available remote

A first-principles studies on TlX (X=P, As)

100%
EN
We present an ab initio study of the structural, electronic and thermodynamic properties of TlX(X=P,As). The plane-wave pseudopotential approach to the density-functional theory within the LDA and GGA approximations implemented in VASP (Viena Ab-initio Simulation Package) is used. The calculated lattice parameter, elastic constants, and band structures are compared with other available theoretical results, and good agreement is obtained. In addition, we have calculated the transition pressure (P t) from zinc-blende (ZB) to (rock-salt) NaCl structures, and have examined some thermodynamic properties.
EN
Drug delivery to the proper site of action in the body is greatly influenced by the excipients used and some processing variables such as changes in compression force. The aim of this investigation was to study the influence of changes in compression forces during tablet manufacturing on the mechanical and release properties of Tramadol matrix tablet. Hardness and friability were used as assessment parameters for mechanical properties while release properties were analysed using dissolution test. Data were analysed using One-way ANOVA at p < 0.05. Tablet hardness and friability were typically compression pressure-dependent with a significant difference in tablet hardness and friability with increase in compression pressure (p < 0.001). Drug release was best expressed by Korsmeyer-Peppas equation as the plots showed high linearity (r2) of 0.998 and 0.988 for formulations containing Xanthan gum and Sodium carboxymethylcellulose, respectively. Drug release from formulations containing Xanthan gum was mainly by diffusion while a combination of diffusion and chain relaxation was the mechanism of drug release from formulation containing Sodium Carboxymethylcellulose. The release properties of tramadol matrix tablet were not significantly influenced by compression pressure but rather by the polymer and the material properties of the drug.
EN
Chitosan is widely applied in biomedical and cosmetic fields. For this reason, there is a need to modify this biopolymer to achieve new properties of chitosan-based materials. The properties of chitosan can be modified by several cross-linking methods. In this work, we used the chemical cross-linking of chitosan with tannic acid, after which cross-linked chitosan was shaped into a 3D structure by the lyophilisation process. For the material obtained, FTIR-ATR analysis was performed to characterise the structure of cross-linked chitosan. Moreover, mechanical properties and swelling properties were measured for chitosan before and after cross-linking. The results show that several properties of chitosan can be changed after cross-linking by tannic acid. The positions of bands in the FTIR spectra of chitosan were shifted after cross-linking. Mechanical properties were altered for cross-linked chitosan. However, the highest compressive modulus was observed for pure chitosan. The lowest compressive modulus was observed for chitosan cross-linked with 20 wt% of tannic acid. Swelling behaviour also depends on the cross-linking of chitosan. It decreases for chitosan after cross-linking by tannic acid. Overall, the properties of cross-linked chitosan depend on the amount of tannic acid used for modification. This method of cross-linking can be useful for obtaining materials with specific properties.
EN
An investigation was carried out to examine the effect of austempering on the microstructure and mechanical properties of nodular cast iron GGG 50 (DIN EN 1563) alloyed with different amount of copper. Optical, scanning electron microscopy and energy dispersive spectroscopy analyses were performed for microstructural characterization. In addition, hardness and tensile tests were carried out for mechanical properties determination. Specimens were austenitized at 900°C for an hour, then austempered for an hour at 330°C in salt bath and cooled at a room temperature in air. The results indicated that the addition of Cu to GGG 50 encouraged pearlite formation in the matrix structure. In addition, with the austempering heat treatment, the structure was transformed from ferrite + pearlite into ausferrite and retain austenite. Furthermore, for the alloy with 2 wt% Cu addition, it was noted that the graphite nodules diverged from sphericity and Cu was concentrated around the graphite. After austempering, mechanical properties were significantly improved and the highest mechanical properties were found at 1.5 wt% Cu.
EN
In this study, eggshell powder obtained from eggshell waste was used as a dopant in soda-lime-silica glass powders. Various eggshell-doped soda-lime-silica glass samples were produced through melting, and the effect of the eggshell powders on the mechanical properties of the soda-lime-silica glasses was investigated by micro-Vickers indentation tests. The X-ray diffraction results of the eggshell-doped glasses showed that, depending on the dopant content, different phases such as gypsum, nepheline, alunogene, aragonite, cristobalite etc. appeared. These results were different from the X-ray diffraction patterns of pure soda-lime-silica glass powders, where the phases observed included sodium aluminium silicate, sodium aluminum oxide, and silicon oxide. Although the elastic modulus of soda-lime-silica glasses increased with the addition of the eggshell powders, the dopant powders also caused an increase in the hardness of the glasses. Furthermore, it was found that the fracture toughness increased for soda-lime-silica glasses with 0.5 and 1 wt% eggshell powder, while it decreased for samples with eggshell powder contents ≥1 wt%. This behaviour could be explained by an increased depolymerization in the network connectivity of the glass when the amount of eggshell dopant increases.
EN
The purpose of the present work was the elaboration of research methodology of the exhaustion degree of performance properties of pipes based on unsaturated polyester and glass fibers, which were manufactured by the cross winding method on a poly(vinyl chloride) core. Within the frame of the work we conducted fatigue-ageing tests being the simulation tool of the degradation process of polyester-glass pipes. Diagnosis of the composite material condition was conducted with the use of nondestructive ultrasonic testing with the application of the echo method, in which the transition time of ultrasonic wave was determined as the identifying parameter. The registered transition time of ultrasonic wave allowed the identification of the material condition during the course of pipes exploitation.
first rewind previous Page / 9 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.