Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  matrix isolation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A new method is used for the separation of ethene secondary ozonide (SOZ) from the other products of ethene ozonization reaction. The reaction was performed in the neat films of the reactants at 77 K. Ethene SOZ was separated from other products of the reaction by vacuum distillation at 190–210 K and analyzed by means of the matrix isolation IR absorption spectroscopy. Spectroscopic data from photolysis of the matrix isolated ozonide was used as an argument for assignment of the infrared spectral bands either to ethene SOZ or to other products of the reaction. The spectra of ethene SOZ isolated in the Ar matrix were analyzed by combining experimental results with the theoretical calculations performed at the MP2 6-311+G (3df, 3pd) level. A new assignment of some experimental fundamental bands is proposed taking in to account the Fermi resonance between CH stretch and the five membered ring vibrations. For the first time more than 30 weak infrared absorption bands were observed and assigned to various combination vibrations and overtones. By using new spectral information concerning the overtones and the combination bands it is concluded that the dissociation of unstable ethene SOZ involving breaking of any of the four CO bonds of the five membered ring of ethene SOZ has low probability. Dissociation of the ring starts from breaking of the OO bond. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.