Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  many-body systems
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body aspects of quantum chaos. We study a chain of interacting, kicked spins and carry out a semiclassical analysis that is capable of identifying all kinds of genuine many-body periodic orbits. We show that the collective many-body periodic orbits can fully dominate the spectra in certain cases.
EN
Different approaches to quantum gravity proposal such as string theory, doubly special relativity, and also black holes physics, all commonly address the existence of a minimal measurable length of the order of the Planck length. One way to apply the minimal length is changing the Heisenberg algebra in the phase space which is known as the generalized uncertainty principle. It is essential to apply this feature on the statistical mechanics of many body systems in the presence of a measurable minimal length scale in order to see the roles of this natural cutoff on physical phenomena. In this paper, some details of statistical mechanics of many body systems that have not been studied carefully in literature are studied in the presence of minimal length scale. The issues such as isomerization, the Liouville theorem, virial theorem and equipartition theorem are studied in this setup with details and the results are explained thoroughly.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.