Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  legs
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
While there is a direct relationship between maximal anaerobic power (Pmax) and swimming performance, the relationship between upper and lower limbs with regard to Pmax and force-velocity (F-v) characteristics is not clear. The aim of the present study was to examine the effect of age and sex on the ratios of mechanical characteristics between upper and lower extremities of adolescent swimmers. Seventeen girls (aged 14.7±1.8 yr) (mean±standard deviation) and 28 boys (14.6±1.4 yr), all members of competitive swimming clubs, performed a F-v test for both legs and arms. In legs, boys had higher values of Pmax (t43=2.4, p<0.05), Pmax expressed in relative to body mass values (rPmax, t43=3.4, p<0.01) and v0 (t43=4.3, p<0.001), while no differences were found for F0 (t43=1.0, p=0.31) and v0/F0 (t43=0.55, p=0.59). In arms, boys had higher values of Pmax (t43=3.2, p<0.01), rPmax (t43=3.9, p<0.001) and v0 (t43=3.4, p<0.01), while no differences were found for F0 (t43=1.9, p=0.06) and v0/F0 (t43=0.16, p=0.87). However, no sex difference was found with regard to the ratios of Pmax (t43=1.9, p=0.06), F0 (t43=1.2, p=0.23) and v0 (t43=1.3, p=0.20) between upper and lower extremities. There was direct relationship between age and Pmax of legs (r=0.64, p<0.01 in girls; r=0.43, p<0.05 in boys) and arms (r=0.56, p<0.05; r=0.57, p<0.01 respectively), while there was not any significant association between age and the ratios of mechanical characteristics of upper and lower limbs. These findings emphasize the need for separate evaluation of arms' and legs' force-velocity characteristics on a regular basis and the consideration of these measures in training design.
EN
Purpose. The study aims to determine the effect of plyometric exercises performed with minimum ground contact time on the maximal power output of the legs and jumping ability. Basic procedures. This study sample comprised 44 non-training students of physical education. Following randomization, the experimental group performed plyometric exercises for six weeks, whereas the control group participated only in lectures. The subjects performed counter movement jumps (CMJ), depth jumps (DJ) and a five-hop test. Main findings. After the completion of plyometric training, an increase in the relative maximal power output (p ≤ 0.001) in CMJ and DJ was observed, whereas the center of mass elevation and the five-hop test distance length did not change significantly (p>0.05). Additionally, the rebound time in DJ was significantly shorter and the range of counter movement in the knee decreased (p ≤ 0.01). Conclusions. Depending on the aim of programme, plyometric training should determine the ways of performing exercises. Methodological guidelines in plyometric training aimed at increasing the maximal power output may be different from indications concerning jumping ability.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.