Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  lattice models
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present Monte Carlo simulations of dissociation of duplexes formed of complementary single-stranded DNAs with one of the strands attached to the surface. To describe the transition from the bound state to the unbound state of two strands located nearby, we use a lattice model taking DNA base-pair interactions and comformational changes into account. The results obtained are employed as a basis for a more coarse-grained model including strand backward association and diffusion resulting in complete dissociation. The distribution of the dissociation time is found to be exponential. This finding indicates that the non-exponential kinetic features observed in the corresponding experiments seem to be related to extrinsic factors, e.g., to the surface heterogeneity.
2
Content available remote

Monte Carlo simulations of protein-like heteropolymers.

88%
|
2001
|
vol. 48
|
issue 1
77-81
EN
Properties of a simple model of polypeptide chains were studied by the means of the Monte Carlo method. The chains were built on the (310) hybrid lattice. The residues interacted with long-range potential. There were two kinds of residues: hydrophobic and hydrophilic forming a typical helical pattern -HHPPHPP-. Short range potential was used to prefer helical conformations of the chain. It was found that at low temperatures the model chain formes dense and partially ordered structures (non-unique). The presence of the local potential led to an increase of helicity. The effect of the interplay between the two potentials was studied. After the collapse of the chain further annealing caused rearrangement of helical structures. Dynamic properties of the chain at low temperature depended strongly on the local chain ordering.
|
2002
|
vol. 49
|
issue 3
683-692
EN
A high coordination lattice model was used to represent the protein chain. Lattice points correspond to amino-acid side groups. A complicated force field was designed in order to reproduce a protein-like behavior of the chain. Long-distance tertiary restraints were also introduced into the model. The Replica Exchange Monte Carlo method was applied to find the lowest energy states of the folded chain and to solve the problem of multiple minima. In this method, a set of replicas of the model chain was simulated independently in different temperatures with the exchanges of replicas allowed. The model chains, which consisted of up to 100 residues, were folded to structures whose root-mean-square deviation (RMSD) from their native state was between 2.5 and 5 Å. Introduction of restrain based on the positions of the backbone hydrogen atoms led to an improvement in the number of successful simulation runs. A small improvement (about 0.5 Å) was also achieved in the RMSD of the folds. The proposed method can be used for the refinement of structures determined experimentally from NMR data.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.