Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  isotherms
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The purpose of the study was to analyse the effect of changes in the composition of raw material and agglomeration on sorption properties of a multi-component food, in the example of a powdered cocoa beverage. The basic composition of the mixtures was 20% of cocoa and 80% of sucrose. A change in raw material composition involved partial or total replacement of sucrose with a mixture of glucose and fructose, or with maltodextrin. Analysis of sorption properties demonstrated variability in the course of isotherms of water vapour sorption for components of the powdered cocoa beverage. Limiting water activity (aw) was determined for the value of 0.529. The conducted analysis detected no significant effect of agglomeration on water content in the tested products. However, a significant change in the raw material composition was demonstrated.
EN
The surface modified Strychnos potatorum seeds (SMSP), an agricultural waste has been developed into an effective adsorbent for the removal of Zn(II) ions from aqueous environment. The Freundlich model provided a better fit with the experimental data than the Langmuir model as revealed by a high coefficient of determination values and low error values. The kinetics data fitted well into the pseudo-second order model with the coefficient of determination values greater than 0.99. The influence of particle diffusion and film diffusion in the adsorption process was tested by fitting the experimental data with intraparticle diffusion, Boyd kinetic and Shrinking core models. Desorption experiments were conducted to explore the feasibility of regenerating the spent adsorbent and the adsorbed Zn(II) ions from spent SMSP was desorbed using 0.3 M HCl with the efficiency of 93.58%. The results of the present study indicates that the SMSP can be successfully employed for the removal of Zn(II) ions from aqueous environment.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.