Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  isotherm
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This paper presents the feasibility for the removal of methyl orange (MO) dye from aqueous solution using an activated carbon prepared from Prosopis juliflora bark. Batch adsorption experiments were carried out as a function of pH, contact time, adsorbate concentration, adsorbent dosage and temperature. The commonly applicable isotherms namely Freundlich and Langmuir equations are used for the prediction of isotherm parameters. A comparison of linear least-square method and a trial-and-error non-linear method are examined in Freundlich and Langmuir (Four forms) isotherms. The nature of adsorption isotherm feasibility was evaluated with dimensionless separation factors (RL). The dynamics of adsorption process was analyzed with Lagergren’s Pseudo-first order and Pseudo-second order kinetic equations. Thermodynamic parameters like the change in enthalpy (ΔHo), change in entropy (ΔSo) and change in Gibbs free energy (ΔGo) were evaluated and ΔGo shows a negative value whereas ΔHo shows the positive value indicating that the adsorption process was spontaneous and endothermic in nature. The functional group characterization of the adsorbent was done using Fourier transform infrared spectroscopy (FTIR). The thermal stability of activated carbon was analyzed using Thermo gravimetric analysis (TGA) and Differential thermal analysis (DTA).
EN
This paper presents the feasibility of the removal of hexavalent chromium ions from aqueous solutions by using activated carbon prepared from Cajanus Cajan(L) Milsp. It was carbonized and activated by treating it with concentrated sulfuric acid followed by heating for 5 h at 500°C. Batch adsorption experiments were carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage and temperature. The experimental data fitted well to the Freundlich isotherm. The thermodynamic parameters such as ΔH°, ΔS°, and ΔG° were calculated, which indicated that the adsorption was spontaneous and endothermic in nature. The adsorbent used in this study was characterized by FT-IR and SEM before and after the adsorption of metal ions. The results indicate that Cajanus Cajan(L) Milsp can be employed as a low cost alternative and commercial adsorbents in the removal of chromium (VI) from water and waste water.
3
Content available remote

Adsorption of penicillin by decaffeinated tea waste

88%
EN
Removal of penicillin has been investigated using decaffeinated tea waste (DCTW). Decaffeination of tea waste was investigated using different methods. Results indicate that ozonation was the most effective process for removal of penicillin. Batch adsorption experiments were completed at various temperatures (20, 30, and 40°C), DCTW dosages (2, 4, 6, 8, and 10 g per 250 mL), penicillin concentrations (4, 10, and 14 mg/L), and pH (3, 7, and 10) conditions. Studies showed that adsorption reaches equilibrium within 40 min. The main factor affecting adsorption of penicillin was the solution pH, with maximum adsorption occurring at pH 3. Higher adsorbent dosages and lower penicillin concentrations also resulted in higher percentages of penicillin removal. Results show that data obeyed the pseudo-first-order kinetic and Freundlich isotherm models. This process proves that low-cost DCTW could be used as a high performance adsorbent for removing penicillin from aqueous solutions.
EN
The adsorption behavior of Pb(II) and Cd(II) ions in aqueous solutions on silica aerogels modified with amino propyl triethoxysilane was investigated as a function of pH, contact time, adsorbate concentration and adsorbent dose. It was found that maximum adsorption of Pb(II) and Cd(II) ions occurs at pH 6.0 and pH 8.0, respectively. The optimum contact time to obtain equilibrium adsorption with the modified silica aerogel was experimentally found to be around 48h. Adsorption isotherms clearly indicated that the adsorption behavior of metals ions on the modified silica aerogels is fitted well with both the Langmuir and Freundlich isotherms. The maximum adsorption capacities of Pb(II) and Cd(II) on modified silica aerogel were found to be 45.45mg/g and 35.71mg/g, respectively. The results indicated that silica aerogels modified with amino functional groups can be used as an efficient adsorbent in the removal of metal ions such as Pb(II) and Cd(II) from aqueous solutions.
EN
The performance of a new anion exchanger prepared from raw cassava straw (RCS), for the removal of nitrate from aqueous solutions was evaluated in this study. The cassava straw was modified by epichlorohydrin in the presence of pyridine. The influencing factors, adsorption kinetics, and thermodynamics model of nitrate adsorption onto the modified cassava straw (MCS) were studied. The results showed that the zeta potentials of RCS and MCS were -20.5 mV and +37.3 mV, nitrogen contents (N %) of RCS and MCS were 0.43 and 4.96%, respectively. The best nitrate removal results was reached at 0.2 g of adsorbent dosage and pH range of 6.0÷12.0. The modified cassava straw adsorbed nitrate(V) quickly, reaching equilibrium within 30 minutes. The kinetics of nitrate adsorption at different initial concentrations (25, 50 and 75 mg/dm3) all fit a second order reaction. The adsorption rates were controlled by both membrane diffusion and intra-particle diffusion. The adsorption data fit the Freundlich adsorption isotherm and the Langmuir adsorption isotherm. The maximum adsorption capacity was 2.14, 2.00 and 1.81 mmol/dm3 at 293, 303, and 313 K, respectively.
PL
Dokonano oceny wydajności nowego wymieniacza anionowego, wytworzonego ze słomy surowego manioku (RCS), w usuwaniu azotanów z roztworów wodnych. Słomę manioku zmodyfikowano za pomocą epichlorohydryny w obecności pirydyny. Zbadano kinetykę adsorpcji, czynniki wpływające oraz model termodynamiczny adsorpcji azotanów na zmodyfikowanej słomie manioku (MCS). Wyniki pokazały, że potencjały zeta RCS i MCS wynosiły -20,5 mV i +37.3 mV, zawartości azotu (% N) w RCS i MCS wynosiły odpowiednio 0,43 i 4,96%. Najlepsze wyniki usuwania azotanów uzyskano, wykorzystując 0,2 g adsorbentu, w zakresie pH 6,0÷12,0. Zmodyfikowana słoma manioku szybko adsorbowała azotany(V), osiągając stan równowagi po 30 minutach. Kinetyka adsorpcji azotu z roztworów o różnych stężeniach początkowych (25, 50 i 75 mg/dm3) wskazuje na reakcję II rzędu. Szybkość procesu adsorpcji kontrolowała zarówno dyfuzja membranowa, jak i dyfuzja cząsteczkowa. Dane doświadczalne opisano za pomocą modeli izotermy Freundlicha i izotermy Langmuira. Maksymalne pojemności sorpcyjne wynosiły 2,14, 2,00 i 1,81 mmol/dm3 w temperaturach odpowiednio 293, 303 i 313 K.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.