Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  immune response
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Aim of the study was to compare the effect of different molecular weight chitosan on activity of peritoneal cells of mice during immunosupression caused by adult stages of Heligmosomoides polygyrus. We observed that intraperitoneal injections of chitosan induce cell infiltration, but the activity of recruited cells differed depending on the type of polysaccharide used. Low molecular weight chitosan activated cells with inflammatory characteristics, while high molecular weight polysaccharide reduced cell responsiveness to stimulation. Although IgA titers in the peritoneal fluid were elevated, chitosan treatments had no effect on the level of infection.
2
100%
EN
The aim of this study was in vitro evaluation of the level of the immune response in relation to wound dressings composed of alginate, calcium carboxymethylcellulose, and dibutyrylochitin and determination of the direction of response, which will make referring next to the results of in vivo phase possible. The subject of the experiments was to examine the commercially available, biodegradable alginate dressing, commercially available but not biodegradable dressing constructed from the sodium carboxymethylcellulose, and synthesized in house biodegradable dressing constructed of the dibutyrylchitin. To determine the direction of the immune response, the degree of secretion of pro-inflammatory interleukin (IL-1, IL-6) and antiinflammatory (IL-10) interleukin from murine fibroblasts having contact with the tested dressings (ELISA enzyme linked immunosorbent assay), was tested.
EN
A total proctocolectomy with ileal pouch-anal anastomosis (IPAA) is considered the surgery of choice for definitive management of familial adenomatous polyposis (FAP) and some patients with ulcerative colitis (UC). However, this surgical treatment is often associated with pouchitis, a long-term complication that occurs mostly in UC patients. The purpose of this study was to better define the molecular background of pouchitis. A microarray-based survey was performed using pouch mucosal samples collected from 28 and 8 patients undergoing surgery for UC and FAP, respectively. There were 4,770 genes that significantly differentiated uninflamed from inflamed mucosal samples, and their functional features were represented mostly by metabolic and cell proliferation pathways. In contrast, functional analyses of aberrantly expressed genes between UC and FAP samples, irrespective of mucosal inflammation status, revealed multiple pathways and terms that were linked to changes in immune response. Interestingly, the comparison of uninflamed UC and FAP samples identified a set of 29 altered probe sets, including an inflammation-related transcript encoding a Charcot-Leyden crystal (CLC) protein. The most distinct changes in gene expression profiles differentiating uninflamed UC and FAP pouch mucosal samples were attributed to the Gene Ontology category innate immune response. Our study confirmed that alterations in immune responses can be found between patients who underwent surgery for UC and FAP, independent of the pouch inflammation status. This observation may be important when managing IPAA patients.
EN
Several kinds of microRNA have been studied as prospective biomarkers in the pursuit of better diagnostics tests for infectious diseases. miRNA which is processed mostly from introns plays a significant role in gene expression involving cell differentiation, proliferation, apoptosis, metabolism, and immune response. Many miRNA mimics or inhibitors are in their clinical phases and advancement in RNA interference will make miRNA become effective tools in the treatment of human infectious diseases. miRNA has been discovered to be largely involved in viral gene regulation as well as the change of host cellular genes during viral infections. The role of miRNA in most bacterial infections has not been thoroughly explored compared to viral infections. Recent studies have highlighted the vital role of host immunity against bacterial infections. miRNA that is sequenced due to fungal infections bear a close similarity to those produced in response to allergy or inflammation. Host-derived miRNA plays a vital role in immune regulation; inflammatory responses may be enhanced or inhibited by its upregulation or downregulation. Here, we outlined the involvement of microRNA in viral, fungal, and bacterial infections and the immune response associated. Further studies on these, will provide advanced diagnostic and treatment protocols for infectious diseases.
EN
The technology of display of heterologous proteins on the surface of Bacillus subtilis spores enables use of these structures as carriers of antigens for mucosal vaccination. Currently, there are no technical possibilities to predict whether a designed fusion will be efficiently displayed on the spore surface and how such recombinant spores will interact with cells of the immune system. In this study, we compared four variants of B. subtilis spores presenting a fragment of a FliD protein from Clostridium difficile in fusion with CotB, CotC, CotG or CotZ spore coat proteins. We show that these spores promote their own phagocytosis and activate both, the J774 macrophages and JAWSII dendritic cells of murine cell lines. Moreover, we used these spores for mucosal immunization of mice. We conclude that the observed effects vary with the type of displayed FliD-spore coat protein fusion and seem to be mostly independent of its abundance and localization in the spore coat structure.
PL
Wprowadzając do organizmu człowieka biomateriał, musimy mieć pewność, że jest on biozgodny (nie cytotoksyczny czy karcynogenny) i że ryzyko aktywacji układu odpornościowego jest niewielkie. Grupa biomateriałów dopuszczonych do użytku medycznego jest obszerna, jednak wiele z nich nie spełnia jednocześnie wszystkich wymagań w zakresie biozgodności. Dlatego materiały przeznaczone do użytku medycznego są wciąż udoskonalane/modyfikowane w celu poprawy ich parametrów, a co za tym idzie, w celu ich jak najskuteczniejszego "ukrycia" przed układem odpornościowym. Jedną z najczęstszych, niepożądanych reakcji organizmu na biomateriał/implant jest odczyn zapalny. Dlatego wiele badań koncentruje się na wpływie implantów na komórki układu odpornościowego. Wykazano, że najczęściej obecnie stosowane modyfikacje biomateriałów, pokrycie ich powierzchni materiałem biologicznym, zmiana porowatości czy też dodatek nanocząsteczek, istotnie poprawiają ich właściwości, w tym osłabiają aktywację leukocytów. W obecnym opracowaniu opisujemy typy biomateriałów, sposoby ich modyfikacji oraz wpływ na komórki immunokompetentne z naciskiem na strategie, które pozwalają na uniknięcie aktywacji układu odpornościowego.
EN
Biocompatibility verification is required prior to implantation of any biomaterial into human body. This involves verification of its cytotoxic and carcinogenic effects, and confirmation of (only) weak activation of the immune system. A substantial number of biomaterials is currently used in medical procedures, however, many of them do not fulfill all biocompatibility requirements. Therefore nowadays materials aimed for medical application are being modified to improve their characteristics, and thus "hide" them more efficiently from the immune system. One of the most common, yet undesirable, responses to biomaterial/implant is inflammation. Because of this, numerous studies focus on immune cells and strategies to modify biomaterials in such ways that they induce only weak or mild, and short-lasting, activation of leukocytes. It has been documented that three approaches in particular are efficient in this regard - surface modification by its covering with biological substances/proteins, modification of surface porosity and addition of nanoparticles. Herein we described types of biomaterials, strategies of their modification and biomaterial impact on leukocytes. In particular, we focus on strategies used to minimize activation of the immune response.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.