Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 29

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  hydrodynamics
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
1
100%
EN
The paper presents an overview of scaling models used for determining hydrodynamic parameters of Circulating Fluidized Bed boilers. The governing equations and the corresponding dimensionless numbers are derived and presented for three different approaches to the scaling law of fluidized beds: classical dimensional analysis, differential equations and integrated solutions and experimental correlations. Some results obtained with these equations are presented. Finally, the capabilities and limitations of scaling experiments are discussed.
EN
Two systems of hydraulic mixing in a vertical cylindrical anaerobic digester: standard and modernised are discussed in the paper. Numerical investigations that were carried out are focused on a study of hydrodynamic processes in an aerobic digester using two various systems of hydraulic mixing as well as on analysis of the efficiency of methane fermentation process accomplished under different geometric parameters of an anaerobic digester and systems of hydraulic mixing.
7
Content available remote

Multiphase Flow Mixture In 180° Pipe Bends

100%
|
|
vol. 34
|
issue 2
227-239
EN
This paper presents the results of research regarding measurements of the values of pressure drops during horizontal flow of gas-liquid and gas-liquid-liquid mixture through 180o pipe bends. The conducted insightful analysis and assessment during multi-phase flow in pipe bends has enabled to develop a new method for determination of their values. This new method for determining pressure drops ensures higher precision of calculation in comparison to other methods presented in literature and can be applied for calculation of these parameters during multi-phase flows in pipe bends with various geometries.
EN
The article presents the results of laboratory tests carried out on a scaling model of the 966MWth fluidised-bed boiler operating in the Lagisza Power Plant, made on a scale of 1:20 while preserving the geometrical similarity. The tests were carried out for scaled-down material taken from different locations on the circulation contour in the state of full boiler loading. To reflect the hydrodynamic conditions prevailing in the combustion chamber, solids with properly selected density and particle size distribution were used. The obtained results have made it possible to determine the location for taking the most representative granular material sample.
Open Physics
|
2012
|
vol. 10
|
issue 4
850-857
EN
In gold-gold collisions of the Relativistic Heavy Ion Collider a perfect fluid of strongly interacting quark gluon plasma (sQGP) is created. The time evolution of this fluid can be described by hydrodynamical models. After an expansion, hadrons are created during the freeze-out period. Their distribution reveals information about the final state. To investigate the time evolution one needs to analyze penetrating probes: e.g. direct photon observations. In this paper we analyze a 1+3 dimensional solution of relativistic hydrodynamics. We calculate momentum distribution, azimuthal asymmetry and momentum correlations of direct photons. Based on earlier fits to hadronic spectra, we compare photon calculations to measurements to determine the equations of state and the initial temperature of sQGP. We find that the initial temperature in the center of the fireball is 507±12 MeV, while for the sound speed we get c s=0.36±0.02. We also estimate a systematic error of these results. We find that the measured azimuthal asymmetry is also compatible with this model. We also predict a photon source that is significantly larger in the out direction than in the side direction.
EN
The paper presents the results of model studies on the hydrodynamics of the world's first supercritical circulating fluidized bed boiler Lagisza 460 MWe, carried out on a scale model built in a scale of 1/20 while preserving the full geometrical similarity. To reflect the macroscopic pattern of flow in the boiler's combustion chamber, tests were carried out based on two dimensionless flow dynamic similarity criteria, while maintaining a constant Froude number value between the commercial and the scaled-down units. A mix of polydispersion solids with its fractional composition determined by scaling down the particle size distribution of the boiler's inert material was utilised for the tests using a special scaling function. The obtained results show very good agreement with the results of measurements taken on the Lagisza 460 MWe supercritical CFB boiler.
11
100%
Open Physics
|
2014
|
vol. 12
|
issue 2
132-140
EN
High-energy collisions of various nuclei, so called “Little Bangs” are observed in various experiments of heavy ion colliders. The time evolution of the strongly interacting quark-gluon plasma created in heavy ion collisions can be described by hydrodynamical models. After expansion and cooling, the hadrons are created in a freeze-out. Their distribution describes the final state of this medium. To investigate the time evolution one needs to analyze penetrating probes, such as direct photon or dilepton observables, as these particles are created throughout the evolution of the medium. In this paper we analyze an 1+3 dimensional analytic solution of relativistic hydrodynamics, and we calculate dilepton transverse momentum and invariant mass distributions. We investigate the dependence of dilepton production on time evolution parameters, such as emission duration and equation of state. Using parameters from earlier fits of this model to photon and hadron spectra, we compare our calculations to measurements as well. The most important feature of this work is that dilepton observables are calculated from an exact, analytic, 1+3D solution of relativistic hydrodynamics that is also compatible with hadronic and direct photon observables.
EN
The application of the three-phase fluidization technology in wastewater treatment and other biochemical processes has been regularly addressed in the past decades. For the design and development of the three-phase fluidized bed reactors, knowledge of the hydrodynamic parameter such as gas holdup is essential and hence in this paper an attempt has been made to study the effect of fundamental and operating variables on gas holdup. On the basis of the experimental results, a unified correlation has been developed to predict gas holdup in the fluidized bed using the Newtonian and the non-Newtonian liquids. The experimental results showed good agreement with those predicted according to the developed correlation.
EN
The paper presents a review of current achievements in the Electrical Capacitance Tomography (ECT) in relation to its possible applications in the study of phenomena occurring in fluidised bed reactors. Reactors of that kind are being increasingly used in chemical engineering, energetics (fluidised bed boilers) or industrial dryers. However, not all phenomena in the fluidised bed have been thoroughly understood. This results in the need to explore and develop new research methods. Various aspects of ECT operation and data processing are described with their applicability in scientific research. The idea for investigation of temperature distribution in the fluidised bed, using multimodal tomography, is also introduced. Metrological requirements of process tomography such as sensitivity, resolution, and speed of data acquiring are noted.
15
Content available remote

Collision of water wave solitons

88%
Open Physics
|
2013
|
vol. 11
|
issue 11
1605-1615
EN
A classification of the time evolution of the two-soliton solutions of the Boussinesq equation is given, based on the number of extrema of the wave. For solitons moving in the same directions, three different scenarios are found, while it is shown that only one of these scenarios exists in case of oppositely moving solitons.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.