Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  heat rejection process
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The objective of this study is to analyze the effect of volume ratio of heat rejection process on the performance of dual cycle. Using finite-time thermodynamics, the relations between the volume ratio of heat rejection, the thermal efficiency, the power output, the heat transfer losses, the friction power and the compression ratio for an air standard Atkinson cycle have been derived. In the model, the nonlinear relation between the specific heats of working fluid and its temperature, the frictional loss and heat leakage loss are considered. The results show that the power output and the thermal efficiency first increase with the increase of volume ratio of heat rejection process and then start to decrease. The optimum value of the volume ratio of heat rejection which maximizes the power output is higher than that which maximizes the thermal efficiency, while the optimum value of the compression ratio which maximizes the power output is lower than that which maximizes the thermal efficiency. The results obtained in the present study provide guidance to the performance evaluation and improvement for practical internal combustion engines.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.