Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  glycolysis
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Nitric oxide and platelet energy metabolism.

100%
|
|
vol. 51
|
issue 3
789-803
EN
This study was undertaken to determine whether nitric oxide (NO) can affect platelet responses through the inhibition of energy production. It was found that NO donors: S-nitroso-N-acetylpenicyllamine, SNAP, (5-50 μM) and sodium nitroprusside, SNP, (5-100 μM) inhibited collagen- and ADP-induced aggregation of porcine platelets. The corresponding IC50 values for SNAP and SNP varied from 5 to 30 μM and from 9 to 75 μM, respectively. Collagen- and thrombin-induced platelet secretion was inhibited by SNAP (IC50 = 50 μM) and by SNP (IC50 = 100 μM). SNAP (20-100 μM), SNP (10-200 μM) and collagen (20 μg/ml) stimulated glycolysis in intact platelets. The degree of glycolysis stimulation exerted by NO donors was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or uncouplers (2,4-dinitrophenol). Neither the NO donors nor the respiratory chain blockers affected glycolysis in platelet homogenate. SNAP (20-100 μM) and SNP (50-200 μM) inhibited oxygen consumption by platelets. The effect of SNP and SNAP on glycolysis and respiration was not reduced by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-stimulated guanylate cyclase. SNAP (5-100 μM) and SNP (10-300 μM) inhibited the activity of platelet cytochrome oxidase and had no effect on NADH:ubiquinone oxidoreductase and succinate dehydrogenase. Blocking of the mitochondrial energy production by antimycin A slightly affected collagen-evoked aggregation and strongly inhibited platelet secretion. The results indicate that: 1) in porcine platelets NO is able to diminish mitochondrial energy production through the inhibition of cytochrome oxidase, 2) the inhibitory effect of NO on platelet secretion (but not aggregation) can be attributed to the reduction of mitochondrial energy production.
EN
The aim of this study was to evaluate the effect of niclosamide, an antihelminthic drug recently identified as potential anti-cancer agent, on head and neck squamous carcinoma cells (HNSCC) viability, cell cycle distribution and apoptosis. The expression of key components of Wnt (CTNNB1, GSK-3β, CCND1, c-MYC, MMP7, BIRC5, Axin2) and glycolysis (GLUT1, MCT1, HK2, PFKM, PKM2, PDHA1, PDK1, LDHA) pathways was also examined to assess possible involvement in niclosamide anti-carcinogenic activity. HNSCC cells (FaDu, BICR6, H314 lines) were used in the research. Niclosamide treatment affected hypopharyngeal FaDu cells to the most extent (IC50 = 0.40 µM), while H314 cells derived from the floor of mouth were the least sensitive (IC50 = 0.94 µM). In FaDu cells the increased percentage of the cells in the S phase was observed along with the induction of apoptosis. Treatment with niclosamide in FaDu cells reduced the expression of MMP7 and the majority of glycolytic genes except increased LDHA. These results indicate that niclosamide is efficient inhibitor of HNSCC cells viability, however this effect depends on the cell type. In FaDu cells, the most sensitive to its anti-proliferative effect and prone to cell cycle arrest and apoptosis, this effect might be related to slightly modulation of canonical Wnt signaling and increased expression of LDHA.
|
2006
|
vol. 53
|
issue 4
769-776
EN
Peroxynitrite (ONOO-) strongly inhibits agonist-induced platelet responses. However, the mechanisms involved are not completely defined. Using porcine platelets, we tested the hypothesis that ONOO- reduces platelet aggregation and dense granule secretion by inhibiting energy production. It was found that ONOO- (25-300 µM) inhibited collagen-induced dense granule secretion (IC50 = 55 ± 7 µM) more strongly than aggregation (IC50 = 124 ± 16 µM). The antiaggregatory and antisecretory effects of ONOO- were only slightly (5-10%) reduced by 1H-[1,2,4]-oxadiazolo-[4,3-α]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. In resting platelets ONOO- (50-300 µM) enhanced glycolysis rate and reduced oxygen consumption, in a dose dependent manner. The ONOO- effects on glycolysis rate and oxygen consumption were not abolished by ODQ. The extent of glycolysis stimulation exerted by ONOO- was similar to that produced by respiratory chain inhibitors (cyanide and antimycin A) or an uncoupler (2,4-dinitrophenol). Stimulation of platelets by collagen was associated with a rise in mitochondrial oxygen consumption, accelerated lactate production, and unchanged intracellular ATP content. In contrast to resting cells, in collagen-stimulated platelets, ONOO- (200 µM) distinctly decreased the cellular ATP content. The glycolytic activity and oxygen consumption of resting platelets were not affected by 8-bromoguanosine 3',5'-cyclic monophosphate. Blocking of the mitochondrial ATP production by antimycin A slightly reduced collagen-induced aggregation and strongly inhibited dense granule secretion. Treatment of platelets with ONOO- (50-300 µM) resulted in decreased activities of NADH : ubiquinone oxidoreductase, succinate dehydrogenase and cytochrome oxidase. It is concluded that the inhibitory effect of ONOO- on platelet secretion and to a lesser extent on aggregation may be mediated, at least in part, by the reduction of mitochondrial energy production.
4
Content available remote

Molecular evolution of enolase

75%
EN
Enolase (EC 4.2.1.11) is an enzyme of the glycolytic pathway catalyzing the dehydratation reaction of 2-phosphoglycerate. In vertebrates the enzyme exists in three isoforms: α, β and γ. The amino-acid and nucleotide sequences deposited in the GenBank and SwissProt databases were subjected to analysis using the following bioinformatic programs: ClustalX, GeneDoc, MEGA2 and S.I.F.T. (sort intolerant from tolerant). Phylogenetic trees of enolases created with the use of the MEGA2 program show evolutionary relationships and functional diversity of the three isoforms of enolase in vertebrates. On the basis of calculations and the phylogenetic trees it can be concluded that vertebrate enolase has evolved according to the "birth and death" model of evolution. An analysis of amino acid sequences of enolases: non-neuronal (NNE), neuron specific (NSE) and muscle specific (MSE) using the S.I.F.T. program indicated non-uniform number of possible substitutions. Tolerated substitutions occur most frequently in α-enolase, while the lowest number of substitutions has accumulated in γ-enolase, which may suggest that it is the most recently evolved isoenzyme of enolase in vertebrates.
EN
O-GlcNAcylation is a post-translational modification involving the addition of a N-acetylglucosamine moiety to the serine/threonine residues of cytosolic or nuclear proteins. Two enzymes are responsible for cyclic O-GlcNAcylation: O-GlcNAc transferase (OGT) which catalyzes the addition of the GlcNAc moiety from UDP-GlcNAc to target proteins and O-GlcNAcase (OGA) which catalyses the hydrolytic removal of the sugar moiety from proteins. Dynamic and reversible O-GlcNAcylation is emerging as an important regulator of diverse cellular processes, such as signal transduction, metabolism, transcription, translation, proteasomal degradation and cell cycle. O-GlcNAcylation occurs on serine or threonine residues of proteins at sites that may also be phosphorylated. Therefore, an extensive crosstalk exists between phosphorylation and O-GlcNAcylation. Recent studies indicate that increased O-GlcNAcylation is a general feature of cancer. Elevated O-GlcNAcylation (hyper-OGlcNAcylation) occurs in many human malignancies including solid tumors such as lung, prostate, breast, colorectal, liver, pancreatic cancers as well as non-solid cancers such as chronic lymphocytic leukemia. The changes in O-GlcNAcylation are associated with the changes in OGT and OGA expression levels. Hyper-O-GlcNAcylation may be linked to the various hallmarks of cancer, including cancer cell proliferation, survival, invasion, metastasis and metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, cell cycle, transcription factors, and metabolic enzymes in cancer cells.
PL
O-GlcNAcylacja jest odwracalną potranslacyjną modyfikacją białek polegającą na przyłączeniu wiązaniem O-glikozydowym pojedynczych reszt β-N-acetyloglukozaminy (GlcNAc) do seryny lub treoniny. W proces O-GlcNAcylacji włączone są dwa enzymy: O-GlcNAc transferaza (OGT), enzym odpowiedzialny za przyłączanie reszt N-acetyloglukozaminy i β-N-acetyloglukozaminidaza (OGA), która katalizuje reakcję odłączania reszt GlcNAc. Dynamiczna i odwracalna O-GlcNAcylacja odgrywa istoną rolę w regulacji szeregu procesów komórkowych, takich jak przekazywanie sygnału, metabolizm, transkrypcja, translacja, degradacja białek w proteasomach i cykl komórkowy. Ponieważ O-GlcNAcylacja dotyczy reszt seryny lub treoniny, które znajdują się w miejscach rozpoznawanych przez kinazy białkowe, wpływa ona na poziom fosforylacji wielu białek i isnieje ścisła zależność pomiędzy tymi modyfikacjami. Ostanie badania wskazują, że w komórkach nowotworowych dochodzi do znacznego zwiększenia poziomu O-GlcNAcylacji. Hiper-O-GlcNAcylację stwierdzono w różnych typach nowotworów, włączając w to guzy lite np. płuc, prostaty, piersi, jelita grubego, trzustki, wątroby a także białaczki np. przewlekłą białaczkę limfatyczną. Zaburzenia O-GlcNAcylacji związane są ze zmianami w komórkach nowotworowych ekspresji enzymów odpowiedzialnych za ten proces, tj. OGT i OGA. Hiper-O-GlcNAcylacja wpływa na proliferację, przeżycie i metabolizm komórek nowotworowych, jak również zwiększa ich zdolność do inwazji i metastazy. Prezentowana praca stanowi przegląd aktualnych informacji dotyczących roli O-GlcNAcylacji w regulacji szlaków przekazywania sygnałów, cyklu komórkowego, czynników transkrypcyjnych oraz enzymów i innych białek związanych z metabolizmem komórek nowotworowych.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.