Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  genotoxicity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Strong radical-scavenging activity of Geranium macrorrhizum extracts isolated by using various solvent systems has been reported previously. This study aimed at expanding the knowledge on the bioactivities of antioxidatively active G. macrorrhizum butanol fraction, which was isolated from ethanolic extract (EB), and water fraction, which was isolated from water extract (WW) by measuring their singlet oxygen scavenging properties, as well as preliminary assessment of cytotoxicity and genotoxicity toward mammalian cells. The cytotoxicity (necrosis induction) of the extracts in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) was partly prevented by antioxidants and stimulated by the prooxidant BCNU (N,N'-bis(2-chloroethyl)-N-nitrosourea). This indicates that the cytotoxicity of G. macrorrhizum extracts is at least partly attributed to their prooxidant action, presumably due to the formation of quinoidal products of their (auto)oxidation. The latter was evidenced by the nature of the peroxidase-catalyzed oxidation products, which supported DT-diaphorase-catalyzed oxidation of NADPH and participated in conjugation reactions with reduced glutathione. The genotoxic properties were studied using chromosome aberration (CA) and sister chromatid exchange (SCE) tests in human lymphocytes in vitro and Drosophila melanogaster somatic mutation and recombination test (SMART) in vivo. In the CA test, only the highest doses of both fractions significantly increased chromosome aberration frequency. In the SCE test, both fractions induced SCEs in a clear dose-dependent manner. G. macrorrhizum extracts were not genotoxic in the SMART test in vivo. Our data indicate that in spite of the possible beneficial (antioxidant) effects of Geranium extracts, the possibilities of their use as ingredients of functional foods and/or food supplements should be further examined due to their cyto- and genotoxic effects resulting mainly from the action of quercetin-derived components abundant in the extracts.
|
2016
|
vol. 63
|
issue 2
281-286
EN
The aim of the present study was to assess the genotoxicity and cytotoxicity of the faecal water of chickens fed ochratoxin A (OTA) contaminated feed with and without probiotic preparation. The study was performed on 20 healthy female Ross broiler chickens divided into 4 groups: control chickens - fed with non-supplemented feed; PP chickens - fed feed supplemented with the probiotic preparation; OTA chickens - fed feed contaminated with 1 mg per kg of OTA; OTA + PP chickens - fed feed contaminated with 1 mg per kg of OTA and supplemented with the probiotic preparation. Faecal water samples were collected on the 35th day of life of chickens from each group. Genotoxicity was measured using the comet assay, and cytotoxicity by means of MTT tests. Mean DNA damage, measured as the percentage of DNA in the tails of the comets, was 8.50 ± 1.10 for chickens fed OTA at 1 mg/kg and 6.41 ± 0.67 in the controls. The supplementation of feed with the probiotic preparation decreased the extent of DNA damage to 4.74 ± 0.78. In the control group of chickens the average cytotoxicity was 38.5 ± 0.5 (in MTT), while in the probiotic preparation group (PP group) it was 31.8 ± 0.7 (in MTT). After supplementation of the feed with the probiotic preparation, the genotoxicity and cytotoxicity were decreased in a statistically significant manner.
EN
A conjugate of pyridine-4-aldoxime and atropine (ATR-4-OX) was synthesized and its antidotal efficiency was tested in vitro on tabun- or paraoxon-inhibited acetylcholinesterase (AChE) of human erythrocytes as well as in vivo using soman-, tabun- or paraoxon-poisoned mice. Its genotoxic profile was assessed on human lymphocytes in vitro and was found acceptable for further research. ATR-4-OX showed very weak antidotal activity, inadequate for soman or tabun poisoning. Conversely, it was effective against paraoxon poisoning both in vitro and in vivo. All animals treated with 5 % or 25 % LD50 doses of the new oxime survived after administration of 10.0 or 16.0 LD50 doses of paraoxon, respectively. Based on the persistence of toxicity symptoms in mice, the atropine moiety had questionable effects in attenuating such symptoms. It appears that ATR-4-OX has a therapeutic effect related to the reactivation of phosphylated AChE, but not to receptor antagonization.
|
2003
|
vol. 50
|
issue 1
291-296
EN
A previously developed and highly sensitive umu-microplate test system based on the nitroreductase- and O-acetyltransferase-overproducing strain Salmonella typhimurium NM3009 and the O-acetyltransferase-overproducing strain S. typhimurium NM2009 was applied to the detection of genotoxic activity in atmospheric particles in urban areas using a relatively small sample load. The results showed that the test system was able to detect slight increases in induced genotoxicity in atmospheric particles and that genotoxicity was detected mainly in the fine fraction but also partially in the coarse fraction. The present sensitive microplate test system has potential for application to the screening of various other environmental samples.
EN
This study aimed to evaluate the antidotal potency of tenocyclidine (TCP) that probably might protect acetylcholinesterase (AChE) in the case of organophosphate poisoning. TCP was tested alone as a pretreatment or in combination with atropine as a therapy in rats poisoned with ¼ and ½ of LD50 of soman. Possible genotoxic effects of TCP in white blood cells and brain tissue were also studied. Results were compared with previous findings on the adamantyl tenocyclidine derivative TAMORF. TCP given alone as pretreatment, 5 min before soman, seems to be superior in the protection of cholinesterase (ChE) catalytic activity in the plasma than in brain, especially after administration of the lower dose of soman. Plasma activities of the enzyme after a joint treatment with TCP and soman were significantly increased at 30 min (P < 0.001) and 24 h (P = 0.0043), as compared to soman alone. TCP and atropine, given as therapy, were more effective than TCP administered alone as a pretreatment. The above therapy significantly increased activities of the enzyme at 30 min (P = 0.046) and 24 h (P < 0.001), as compared to controls treated with ¼ LD50 of soman alone. Using the alkaline comet assay, acceptable genotoxicity of TCP was observed. However, the controversial role of TCP in brain protection of soman-poisoned rats should be studied further.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.