Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  fluidization
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The paper presents the results of the disposal of packaging waste from two companies: Tetra Pak and Combibloc, carried out in a fluidized bed boiler of rated thermal power 0.5 MW. The material introduced into the fluidized bed boiler underwent thermal and mechanical degradation in a sand bed of the temperature between 750 and 850°C. The process proceeds auto-thermally, without the need of additional fuel. The appropriately chosen fluidization parameters caused the separation of the solid products of combustion from the deposit material. Presence of aluminum, part of it in an un-oxidized form, was confirmed in separated dust. The gaseous products of combustion contained the traces of oxides of nitrogen and sulfur, mainly originating from the remnants of food products contained in the packaging. However, the concentration of these oxides met the requirements of emission standards.
EN
The paper presents the results of a research on the effects of process parameters on the combustion of waste plastics. The experiments were carried out in a laboratory fluidized bed reactor. The temperature and the conditions of the process were changed during the experiments. The plastics were combusted continuously (autothermally), periodically with extra fuel (co-firing) and alone in a hot fluidized bed. During the combustion process of materials containing nitrogen (PA, ABS), while the bed temperature decrease, changes of emissions of nitrogen oxides, in particular an increase in the concentration of N2O, up to 250 ppm at ~730°C, were observed. During ABS combustion, emission of HCN was registered, at a maximum of 400 ppm. The presence of the supporting fuel (LPG) resulted in the stabilization and acceleration of the plastic samples degradation process. The rate of thermal decomposition of waste materials depended on its elemental composition and also the physicochemical properties.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.