Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  fluidisation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The paper discusses the possibility of using the reversible reaction CaCO3 ↔ CaO + CO2 for the cyclic capture and release of CO2 directly inside a fluidised bed combustor. This could lead to the lowering of CO2 emissions into the atmosphere, as part of an effort to mitigate the greenhouse effect associated with the rising atmospheric CO2 concentrations resulting from obtaining energy from burning fossil fuels.An enrichment coefficient E has been introduced and defined as a measure of the production of CO2 (on calcining CaCO3) or its removal (on carbonation of CaO) with respect to the level associated with fuel combustion alone. The observations made on the effect of introducing an additional external stream of CO2 on the efficiency of the chemical capture process have been described. Through an appropriate control of the temperature inside the reactor it is possible to change the value of E over the range [-0.8; 0.8]. This implies that up to about 80% of the CO2 derived from the fuel can be temporarily retained within the bed and released later, at a higher concentration. The proposed method of burning fuel in a chemically active fluidised bed could be an available method leading to CO2 isolation from the flue gases and leading to its eventual sequestration.
EN
Based on hydrodynamic data, Kato-Wen and Kunii-Levenspiel bubbling-bed model parameters, supplemented with assumptions characteristic for tested confined fluidised bed, were analysed. The calculated bubble diameters and the bed composition proved essential influence of inter-particle space of packed compacted component onto fluidisation character. The usability of the conducted model analysis was also confirmed. Finally, it can be concluded that Kunii-Levenspiel and Kato- Wen models with characteristic assumptions (for the tested bed) can be applied for calculation of the confined fluidised bed layer porosity. Discrepancies of ε f value, determined on the basis of the above mentioned bubbling-bed models do not exceed 8% of the error. The model parameters obtained from the matching the model relations to experimental data εf = f(u0) allow an analysis of the fluidisation character as well as gas velocity regime and the fluidised bed structural composition identification. A description of the regime of the process in which confined fluidised bed is characterised with an increase of mass and heat transfer rate is also possible using relation (17) derived in the present study.
EN
The paper presents a review of current achievements in the Electrical Capacitance Tomography (ECT) in relation to its possible applications in the study of phenomena occurring in fluidised bed reactors. Reactors of that kind are being increasingly used in chemical engineering, energetics (fluidised bed boilers) or industrial dryers. However, not all phenomena in the fluidised bed have been thoroughly understood. This results in the need to explore and develop new research methods. Various aspects of ECT operation and data processing are described with their applicability in scientific research. The idea for investigation of temperature distribution in the fluidised bed, using multimodal tomography, is also introduced. Metrological requirements of process tomography such as sensitivity, resolution, and speed of data acquiring are noted.
EN
This study presents the use of fluidised bed combustion to produce thermal energy, aluminium recovery and the reduction of the Tetra Pak and Combibloc packaging waste stream. Fluidisation and the pneumatic transport, which take place in the same apparatus, allow recovering bits of the aluminium foil from the combustion zone. The limited time spent in the high temperature zone leads to a high content of free metal in the solids separated in the ash trap and cyclone. Other solid products are practically chemically inert and may be disposed in a landfill of municipal or inert wastes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.