Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  estradiol
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Retinoic acid and transforming growth factor-β (TGF-β) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-β1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-β1 concentrations, a marked reduction in the stimulatory action of estradiol (10-9 and 10-8 M) was observed whereas in combination with tamoxifen (10-7 and 10-6 M) only 30 ng/ml TGF-β1 caused a statistically significant reduction to aproximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-β1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 ± 19% (control =100%) by 3 ng/ml TGF-β1, and this dose was used throughout. It was found that addition of TGF-β1 and isotretinoin to the culture did not decrease proliferation, while TGF-β1 and tretinoin at low concentrations (3 × 10-8 and 3 × 10-7 M) reduced the percentage of proliferating cells by aproximately 30% (67±8% and 67±5%, P <0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10-9 M estradiol, attenuated by TGF-β1. In addition, the retinoids in combination with TGF-β1 and tamoxifen (10-6 M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the percentage of cells with a positive reaction to PCNA and Ki 67 antigen. TGF-β1, isotretinoin and tretinoin added to the culture resulted in the lowest percentage of PCNA positive cells. However, the lowest fraction of Ki 67 positive cells was observed after addition of isotretinoin. The obtained results also confirm the fact that the well-known regulatory proteins Bcl-2 and p53 play an important role in the regulation of apoptosis in the MCF-7 cell line, with lowered Bcl-2 expression accompanying easier apoptotic induction. The majority of the examined compounds act via the p53 pathway although some bypass this important proapoptotic factor.
|
|
issue 3
503-507
EN
Natural phenolic acids are commonly present in plants consumed in the diet. Recently we have observed that different natural phenolic acids exert differential effects on the body mass gain in ovariectomized and non-ovariectomized female rats. The aim of the present study was to investigate the effects of ferulic, caffeic, p-coumaric and chlorogenic acids on serum estradiol and total cholesterol levels in ovariectomized and non-ovariectomized rats. The experiments were carried out on 3-month old female Wistar Cmd:(WI)WU rats, divided into following groups (n=8 in each group): non-ovariectomized control rats and non-ovariectomized rats receiving ferulic, caffeic, p-coumaric or chlorogenic acids, sham-operated control rats, ovariectomized control rats and ovariectomized rats receiving the same phenolic acids. The phenolic acids were administered at a dose of 10 mg/kg p.o. daily for 4 weeks. Serum estradiol and total cholesterol levels on the next day after the last administration of the phenolic acids were examined. The phenolic acids did not affect serum estradiol or total cholesterol levels in non-ovariectomized rats. In ovariectomized rats, caffeic acid and to a lesser extent p-coumaric acid increased serum estradiol level, which effect correlated with a decreased body mass gain. All the phenolic acids decreased serum cholesterol level in ovariectomized rats. Concluding, the anti-obesity activity of some phenolic acids may be, at least partially, connected with estrogenic pathways.
3
Content available remote

Dynamics of estrogen-induced oxidative stress

100%
EN
The objective of this study was to assess the dynamics of oxidative damage to cellular macromolecules such as proteins, lipids and DNA under conditions of oxidative stress triggering early stages of estrogen-dependent carcinogenesis. A rodent model of carcinogenesis was used. Syrian hamsters were sacrificed after 1, 3, 5 h and one month from the initial implantation of estradiol. Matching control groups were used. Kidneys as target organs for estradiol-mediated oxidative stress were excised and homogenized for biochemical assays. Subcellular fractions were isolated. Carbonyl groups (as a marker of protein oxidation) and lipid hydroxyperoxides were assessed. DNA was isolated and 8-oxodGuo was assessed. Electron paramagnetic resonance spectroscopy was used to confirm the results for lipid peroxidation. Exposition to estradiol in the rodent model leads to damage of macromolecules of the cell, including proteins and DNA, but not lipids. Proteins appear to be the primary target of the damage but are closely followed by DNA. It has previously been speculated that protein peroxides can increase DNA modifications. This time sequence was observed in our study. Nevertheless, the direct relation between protein and DNA damage still remains unsolved.
EN
Genistein, a major phytoestrogen of soy, is considered a potential drug for prevention and treatment of postmenopausal osteoporosis. The aim of the present study was to compare the effects of genistein, estradiol and raloxifene on the skeletal system in vivo and in vitro. Genistein (5 mg/kg), estradiol (0.1 mg/kg) or raloxifene hydrochloride (5 mg/kg) were administered daily by a stomach tube to mature ovariectomized Wistar rats for 4 weeks. Bone mass, mineral and calcium content, macrometric parameters and mechanical properties were examined. Also the effects of genistein, estradiol and raloxifene (10-9-10-7 M) on the formation of osteoclasts from neonatal mouse bone marrow cells and the activity of osteoblasts isolated from neonatal mouse calvariae were compared. In vivo, estrogen deficiency resulted in the impairment of bone mineralization and bone mechanical properties. Raloxifene but not estradiol or genistein improved bone mineralization. Estradiol fully normalized the bone mechanical properties, whereas genistein augmented the deleterious effect of estrogen-deficiency on bone strength. In vitro, genistein, estradiol and raloxifene inhibited osteoclast formation from mouse bone marrow cells, decreasing the ratio of RANKL mRNA to osteoprotegerin mRNA expression in osteoblasts. Genistein, but not estradiol or raloxifene, decreased the ratio of alkaline phosphatase mRNA to ectonucleotide pyrophosphatase phosphodiesterase 1 mRNA expression in osteoblasts. This difference may explain the lack of genistein effect on bone mineralization observed in ovariectomized rats in the in vivo study. Concluding, our experiments demonstrated profound differences between the activities of genistein, estradiol and raloxifene towards the osseous tissue in experimental conditions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.