Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  endocytosis
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 3
471-480
EN
A simple theoretical model considering cell membrane mechanosensitivity can accurately describe published experimental data on membrane area creeping and recovery, and on osmotic expansion and rupture. The model to data fit reveals real values of membrane tension and elasticity modulus, and the parameters describing membrane organization and kinetics of mechanosensitive membrane traffic, including small solute transport, water permeability, endocytosis, exocytosis, and caveolae formation. This estimation allows for separation and quantitative analysis of the participation of different processes constituting the response of plasmalemma to short time-scale membrane load. The predicted properties of the model were verified for membrane stretching at different osmotic pressures. Finally, a simple hypothesis concerning stressed cell membrane breakdown is postulated.
|
2001
|
vol. 48
|
issue 4
1025-1042
EN
The role of the yeast vacuole, a functional analogue of the mammalian lysosome, in the turnover of proteins and organelles has been well documented. This review provides an overview of the current knowledge of vesicle mediated vacuolar transport in the yeast Saccharomyces cerevisiae cells. Due to the conservation of the molecular transport machinery S. cerevisiae has become an important model system of vacuolar trafficking because of the facile application of genetics, molecular biology and biochemistry.
3
Content available remote

Cellular metabolism and lysosomal mTOR signaling

100%
EN
Over the last few years extensive studies have linked the activity of mTORC1 to lysosomal function. These observations propose an intriguing integration of cellular catabolism, sustained by lysosomes, with anabolic processes, largely controlled by mTORC1. Interestingly, lysosomal function directly affects mTORC1 activity and is regulated by ZKSCAN3 and TFEB, two transcription factors and substrates of mTORC1. Thus, the lysosomal mTOR signaling complex represents a hub of cellular energy metabolism, and its dysregulation may lead to a number of human diseases. Here, we discuss the recent developments and highlight the open questions in this growing field.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.