Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  electrochemistry
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The capabilities and applications of the focused ion beam (FIB) technology for detection of an electrochemical signal in nanoscale area are shown. The FIB system, enabling continuous micro- and nanofabrication within only one equipment unit, was used to produce a prototype of electrochemical nanometer-sized electrode for sensor application. Voltammetric study of electrochemically active compound (ferrocenemethanol) revealed the diffusion limiting current (12 pA), corresponding to a disc (planar) nanoelectrode with about 70 nm diameter of contact area. This size is in a good accordance with the designed contact-area (50 nm × 100 nm for width × thickness) of the FIB-produced nanoelectrode. It confirms that produced nanoelectrode is working properly in liquid solution and may enable correct measurements in nanometer-sized regions.
EN
Bulk samples consisting of BaCe_{0.85}Y_{0.15}O_{3-δ} (BCY15) and Ce_{0.85}Y_{0.15}O_{2-δ} (YDC15) compounds, mixed together in different ratios, were studied as potential electrolytes in dual protonic ceramic-solid oxide fuel cells and compared with non-composite BCY15 and YDC15. The microstructures of the sintered materials indicate that BCY15 exhibits the largest grains, whereas composites have greater visible porosity than the non-composite samples. From X-ray diffraction studies it follows that BCY15 and YDC15 consist mainly of one phase, whereas the composites are two-phase materials. Electrochemical impedance spectroscopy studies at different temperatures show that the composite materials are capable of conduction the order of 10¯³ S/cm at temperatures above 500°C in a hydrogen-containing atmosphere. Furthermore, activation energy values of the conductivity determined for the composites in air atmosphere are between those obtained for BCY15 (E_{a}=0.590±0.017 eV) and YDC15 (E_{a}=1.132±0.008 eV). From this it follows that both phases of the composites influence the electrical conductivity of the materials. In conclusion, BCY15 and the BCY15-YDC15 composites show promise for future use as electrolytes in dual protonic ceramic-solid oxide fuel cells.
|
|
issue 4
865-869
EN
SO3-Ph-BTBP is a hydrophilic tetra-N-dentate ligand proposed for An(III)/Ln(III) separation by solvent extraction, and a candidate for use in future advanced reprocessing schemes such as GANEX and SANEX. We present the first study of the effect of SO3-Ph-BTBP on the corrosion behavior of stainless steels. Specifically, studies have been performed using steels and conditions equivalent to those found in relevant nuclear reprocessing flow sheets. SO3-Ph-BTBP has been shown to have little effect on either steel passivation or reductive dissolution. However, if driven cathodically into a region of hydrogen evolution at the electrode surface or conversely anodically into a region of transpassive dissolution, observed currents are reduced in the presence of SO3-Ph-BTBP, suggesting corrosion inhibition of the steel potentially through weak absorption of a SO3-Ph-BTBP layer at the metal-solution interface. The lack of any observed corrosion acceleration via complexation of Fe3+ is surprising and has been suggested to be due to the slow extraction kinetics of SO3-Ph-BTBP as a result of a requirement for a trans- to cis-conformational change before binding.
EN
Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC) deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered) or chemical composition (Co or Ni). The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.