Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  density of states
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The quality of the interface region in a semiconductor device and the density of interface states (DOS) play important roles and become critical for the quality of the whole device containing ultrathin oxide films. In the present study the metal-oxide-semiconductor (MOS) structures with ultrathin SiO2 layer were prepared on Si(100) substrates by using a low temperature nitric acid oxidation of silicon (NAOS) method. Carrier confinement in the structure produces the space quantization effect important for localization of carriers in the structure and determination of the capacitance. We determined the DOS by using the theoretical capacitance of the MOS structure computed by the quantum mechanical approach. The development of the density of SiO2/Si interface states was analyzed by theoretical modeling of the C-V curves, based on the superposition of theoretical capacitance without interface states and additional capacitance corresponding to the charges trapped by the interface states. The development of the DOS distribution with the passivation procedures can be determined by this method.
Open Physics
|
2003
|
vol. 1
|
issue 3
421-431
EN
We have calculated the spectral function and density of states of halffilled two-dimensional Hubbard model in the Hubbard-I approximation assuming an antiferromagnetic long range order at low temperature and compared results to the QMC data. It occurs that calculated functions are in a qualitative agreement with the QMC one. We have also shown that Neel ordered state dispersion has the similar form to the spin density wave one.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.