Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  curing process
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
PAPRs (Partially Acidulated Phosphate Rocks) are the most prospective phosphate fertilizers, mainly through the use of the smaller amount of reagents and the ability to utilize low-grade phosphate rocks with a low content of P2O5. The aim of our studies was to investigate the temperature and moisture infl uence on the curing process of PAPR-type fertilizer products. Fertilizer preparations of a PAPR-type were obtained in the Atlas model-type apparatus (Syrris Ltd.). The curing temperature and the moisture content were controlled by the heating time of the reaction vessel and the degree of PAPR stoichiometric norm (ηPAPR). Our results indicate that increasing the curing temperature of the PAPR-type fertilizer product by 10oC can lead to a decrease in the moisture content of the fi nal product by an average value of 1.5% w/w. Additionally reducing the moisture content by 1% w/w may correspond to an increase in P2O5 content by an average value of 0.5% w/w.
EN
The kinetics of the curing process of isocyanate-epoxy materials hardened in the presence of 1- substituted imidazole derivatives was studied by the Coast-Redfern method. The extent of a conversion parameter of the curing process in two ways was calculated: DSC (peak area integration) and rheology (viscosity changes). The activation energy values were determined for epoxy-isocyanate cured in the presence of 0.5; 1.0 and 2.0 phr 1-substituted imidazole derivatives respectively. Increasing of accelerators amount results in decreasing the activation energy and other kinetic parameters.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.