Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 23

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  computer simulation
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
3
Content available remote

Starch gelatinisation in Couette-Taylor flow apparatus

100%
EN
In this paper starch gelatinisation in Couette-Taylor flow (CTF) apparatus (equipped with a water heat jacket) has been investigated. CTF (characterised by the presence of Taylor vortices) provides good environment for gelatinisation, e.g. effective mixing, fast heat transfer, positive influence on starch rheological properties. During experiments starch gelatinisation degree and starch swelling has been studied. It was accompanied by temperature measurements performed along the apparatus. Additionally, starch gelatinisation was investigated by computer simulation. A complete starch gelatinisation was obtained for the shortest investigated residence time in the apparatus when the temperature in the heat jacket was above 85 °C. Nevertheless, it seems that it is still possible to reduce a residence time value, as well as, the value of Thj, but it may require some acceleration of rotor rotation. The swelling degree of gelatinised starch increased with growing values of residence time, rotor rotation and process temperature. Heat transferred could be affected by the structure of the Taylor vortex flow. No significant destruction of starch granules was observed during the treatment in Couette-Taylor flow apparatus. A quite satisfactory agreement between computer simulation and experiments results was achieved.
EN
Advantages of the electron-beam plasma (EBP) for production of bioactive titanium oxide coatings were experimentally studied. The coatings were synthesized in EBP of oxygen on the surface of plane titanium substrates. A number of analytical techniques were used to characterize morphology, chemical composition, and structure of the synthesized titanium oxide. The analysis showed the titanium oxide (IV) in the rutile form to predominate in the coatings composition. The samples with plasmachemically synthesized TiO2-coatings were more hydrophilic than untreated titanium. The effect was stable during two weeks and then the degradation of the wettability began. The EBP-stimulated TiO2 synthesis improved the hydroxyapatite formation on the surface of plane titanium substrates. The EBP-stimulated TiO2 synthesis is promising technique to produce bioactive coatings on the surface of titanium medical dental and bone implants. The computer simulation of plasma-surface interaction was carried out to predict the plasma composition, to find the spatial distribution of the sample temperature, and to calculate the flows of the chemically active plasma particles bombarding the tube wall. The flows of atomic and singlet oxygen were found to be the most intensive and, therefore, these particles are likely to be responsible for the formation of the biocompatible TiO2-coaings.
EN
The purpose of this study was to establish a multi-segment dynamic model in the LifeMOD to examine kinematics of the center of mass and foot, and muscle forces of selected upper extremity muslces during a double-leg circle (DLC) movement on pommel horse in gymnastics and compared with three-dimensional kinematics of the movement and surface electromyographic (sEMG) activity of the muscles. The DLC movement of one elite male gymnast was collected. The three-dimensional (3D) data was imported in the Lifemod to create a full-body human model. A 16-Channel surface electromyography system was used to collect sEMG signals of middle deltoid, biceps brachii, triceps brachii, latissimusdorsi, and pectoralis major. The 3D center of mass and foot displacement showed a good match with the computer simulated results. The muscle force estimations from the model during the four DLC phases were also generally supported by the integrated sEMG results, suggesting that the model was valid. A potential application of this model is to help identify shortcomings of athletes and help establish appropriate training plans errors in the DLC technique during training.
EN
There are certain well-known methods of diminishing concentrations of nitrogen compounds, but they are ineffective in case of nitrogen-rich wastewater with a low content of biodegradable carbon. Partial nitritation followed by anaerobic ammonium oxidation (Anammox) process appear to be an excellent alternative for traditional nitrification and denitrification. This paper presents the feasibility of successful start-up of Anammox process in a laboratory-scale membrane bioreactor (MBR). It was shown that the combination of membrane technology and Anammox process allowed to create a new highly efficient and compact system for nitrogen removal. It was possible to achieve average nitrogen removal efficiency equal to 76.7 ± 8.3%. It was shown that the start-up period of 6 months was needed to obtain high nitrogen removal efficiency. The applied biochemical model of the Anammox process was based on the state-of-the-art Activated Sludge Model No.1 (ASM 1) which was modified for accounting activity of autotrophs (nitrite-oxidising bacteria and nitrateoxidising bacteria) and anammox bacteria. In order to increase the predictive power of the simulation selected parameters of the model were adjusted during model calibration. Readjustment of the model parameters based on the critically evaluated data of the reactor resulted in a satisfactory match between the model predictions and the actual observations.
EN
This paper presents a mathematical-computational toy model based on the assumed dynamic principles of prebiotic peptide evolution. Starting from a pool of amino acid monomers, the model describes in a generalized manner the generation of peptides and their sequential information. The model integrates the intrinsic and dynamic key elements of the initiation of biopolymerization, such as the relative amino acid abundances and polarities, as well as the oligomer reversibility, i.e. fragmentation and recombination, and peptide self-replication. Our modeling results suggest that the relative amino acid abundances, as indicated by Miller-Urey type electric discharge experiments, played a principal role in the early sequential information of peptide profiles. Moreover, the computed profiles display an astonishing similarity to peptide profiles observed in so-called biological common ancestors found in the following three microorganisms; E. coli, M. jannaschii, and S. cereviasiae. The prebiotic peptide fingerprint was obtained by the so-called polarity index method that was earlier reported as a tool for the identification of cationic amphipathic antibacterial short peptides.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.