Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 24

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  collagen
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
Cultured skin fibroblasts from a proband with a lethal form of osteogenesis imperfecta produce two forms of type I collagen chains, with normal and delayed electrophoretic migration; collagen of the proband's mother was normal. Peptide mapping experiments localized the structural defect in the proband to α1(I) CB8 peptide in which residues 123 to 402 are spaned. Direct sequencing of amplified cDNA covering this region revealed a G to A single base change in one allele of the α1(I) chain, that converted glycine 388 to arginine. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. The novel mutation conforms to the linear gradient of clinical severity for the α1(I) chain and results in reduced thermal stability by 3°C and intracellular retention of abnormal molecules.
|
2002
|
vol. 49
|
issue 2
451-458
EN
The state of the vascular system of the mother and of placenta is known to exert a great influence on intrauterinal development of the fetus. Pre-eclampsia is the most common pathological syndrome connected with pregnancy. Since collagen is one of the main constituents of the vessel wall a comparison was made with collagen content and its molecular polymorphism in umbilical cord veins of newborns from healthy and pre-eclamptic mothers. It was found that umbilical cord veins of newborns from mothers with pre-eclampsia contained 18% less collagen than those of the newborns from normal pregnancies. This decrease was accompanied by a slight decrease of collagen solubility, but all its types (I, III, IV, V and VI) were present. However, the umbilical vein wall of newborns from mothers with pre-eclampsia contained relatively less of type I and more of type III collagen than the normal umbilical cord. These differences may be connected with a disturbance of blood flow in fetus of a woman with pre-eclampsia.
EN
To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route. Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.
EN
The toxic action of cadmium in the bone tissue is known, but its mechanisms are still unexplained. We examined whether Cd influences collagen content and its solubility in the femoral bone of three-week-old female rats exposed to 5 or 50 mg Cd/l in drinking water. Non-cross linked collagen was extracted with 0.5 M acetic acid, and two acid-insoluble collagen fractions were extracted with pepsin and 4.0 M guanidine hydrochloride, respectively. SDS/PAGE showed the presence of two collagen types, I and V, in all three extracted fractions. Exposure of rats to Cd for 6 months increased the amount of acid-soluble collagens type I and V and decreased the level of acid-insoluble collagens. The amount of total collagen extracted from the bones of rats exposed to 50 mg Cd/l was reduced by about 14% as compared to control and those intoxicated with 5 mg Cd/l. The solubility of type I bone collagen (determined as the percentage of acetic-soluble fraction of total collagen) was increased 2.9- and 3.0-fold in rats intoxicated with 5 and 50 mg Cd/l, respectively. Similarly, the solubility of type V collagen was increased 2.3- and 2.7-fold, respectively. Our results indicate that Cd treatment affects bone collagen by decreasing its content and increasing its solubility.
EN
The purpose of this study was to examine the association of the BstUI RFLP C/T (rs 12722) and DpnII RFLP C/T (rs 13946) COL5A1 polymorphisms, individually and as haplotypes, with anterior cruciate ligament ruptures in recreational skiers. Subjects were 138 male recreational skiers with surgically diagnosed primary anterior cruciate ligament ruptures. The control group consisted of 183 apparently healthy male recreational skiers, who were without any self-reported history of ligament or tendon injury. DNA was extracted from buccal cells donated by the subjects and genotyping was carried out using real-time PCR. The genotype distributions for both polymorphisms met Hardy- Weinberg expectations in both groups. There were no significant differences in genotype distribution of allele frequencies of COL5A1 BstUI RFLP C/T and COL5A1 DpnII RFLP C/T polymorphisms between the ACL rupture and control groups. The T-T (BstUI RFLP T, DpnII RFLP T) haplotype was the most common (55.6%). The haplotype T-C was not present in any of the subjects. There was an underrepresentation tendency of the C-T haplotype in the study group compared to controls under recessive mode of inheritance. Higher frequency of the COL5A1 BstUI RFLP C/T and COL5A1DpnII RFLP C/T polymorphisms haplotype is associated with reduced risk of anterior cruciate ligament injury in a group of apparently healthy male recreational skiers.
EN
The mechanisms underlying cartilage matrix degradation in joint diseases is not fully understood but reactive oxygen species are implicated as main causative factors. Comparative studies of glutathione reductase (GR) activity in synovial fluid from patients with rheumatoid arthritis (RA), reactive arthritis (ReA) and osteoarthritis (OA) as well as correlations between GR activity and concentration of the major cartilage components in synovial fluid are presented in this study. We found significantly higher activity of GR in RA (about three-fold) and ReA (about two-fold) than in OA. In RA and ReA patients, GR activity in synovial fluid correlates negatively with the concentrations of collagen and degradation products of sulfated glycosaminoglycans. In OA patients the activity of GR was significantly lower than in RA and ReA, which positively correlated with the concentration of collagen and showed a tendency for positive correlation with the degradation products of sulfated glycosaminoglycans. Our results suggest that in RA and ReA patients increased activity of GR does not prevent the increased degradation of collagen and proteoglycans by ROS.
EN
Introducing collagen, which is basic ingredient of bone tissue, into the structure of chitosan gels which are formed at the physiological body temperature, is aimed at creating the so-called biomimetic structures, i.e. close in their composition to the natural composition of bone tissue. Within the research the influence of collagen on structural properties of thermosensitive chitosan gels and the influence of ALP on structural properties of chitosan and chitosan-collagen gels was determined.
EN
Temperature measurement of electrical conductivity s were carried out from 395 to 543 K. The obtained dependence indicates an increase in s. The temperature dependence of the electrical conductivity allowed to observe the release of the free water, bound water and structural water. Studies on electric conductivity of collagen indicate the occurrence of percolation threshold, which comprises free release of water and change its properties from semiconducting to dielectric one.
9
Content available remote

Accumulation of collagen in ovarian benign tumours

80%
EN
Extracellular matrix components of benign ovarian tumours (cystadenoma, adenofibroma, cystadenofibroma) were analysed. The investigated tumours contained twice as much collagen than control ovarian tissues. Significant alterations in mutual quantitative relationships between collagens of various types were observed. The proportion of type I collagen decreased and that of type III collagen increased. The accumulation of collagen was accompanied by a reduction in sulphated glycosaminoglycan content whereas the amount of hyaluronic acid was not changed. Dermatan sulphate was the most abundant glycosaminoglycan component. It is suggested that the accumulation of collagen (natural barrier to the migration of tumour cells) and underexpression of glycosaminoglycans/proteoglycans (binding some growth factors and interleukins) may exert an inhibitory effect on tumour growth.
EN
Chitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon and other important biomedical features. However, the properties of biopolymers, including their complexation abilities, are influenced by the nature of the aqueous medium with which they interact. In this study, we employed molecular dynamics simulations to describe the effect of pH and the presence of sodium and calcium cations on the stability of molecular complexes formed by collagen type II with chitin and chitosan oligosaccharides. Based on Gibbs free energy of binding, all considered complexes are thermodynamically stable over the entire pH range. The affinity between chitosan oligosaccharide and collagen is highly influenced by pH, while oligomeric chitin shows no pH-dependent effect on the stability of molecular assemblies with collagen. On the other hand, the presence of sodium and calcium cations has a negligible effect on the affinity of chitin and chitosan for collagen.
EN
In the present study, thin films based on the blends of chitosan (Ch) and hyaluronic acid (HA) with and without collagen (Coll) were characterised using tensile tests, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis (TGA). Ch/HA and Ch/HA/Coll polymer blends were prepared using the solvent evaporation technique. The interactions between polymer components in the binary and ternary blends were studied by FTIR analysis. Mechanical properties were studied and compared with those of simple polymer films. These results show that the addition of collagen into Ch/HA blends led to the increase of tensile strength and Young modulus. Moreover, it was found that the thermal stability of the Ch/HA binary blend significantly increased upon the addition of collagen.
12
Content available remote

Collagen type II modification by hypochlorite.

70%
|
2003
|
vol. 50
|
issue 2
471-479
EN
Oxidation of proteins is a common phenomenon in the inflammatory process mediated by highly reactive agents such as hypochlorite (HOCl/OCl-) produced by activated neutrophils. For instance, in rheumatoid arthritis hypochlorite plays an important role in joint destruction. One of the major targets for HOCl/OCl- is collagen type II (CII) - the primary cartilage protein. In our study, HOCl/OCl- mediated collagen II modifications were tested using various methods: circular dichroism (CD), HPLC, ELISA, dynamic light scattering (DLS), fluorimetry and spectrophotometry. It was shown that hypochlorite action causes deamination with consecutive carbonyl group formation and transformation of tyrosine residues to dichlorotyrosine. Moreover, it was shown that ammonium chloramine (NH2Cl) formed in the reaction mixture reacts with CII. However, in this case the yield of carbonyl groups and dichlorotyrosine is lower than that observed for HOCl/OCl- by 50%. CD data revealed that collagen II exists as a random coil in the samples and that chlorination is followed by CII fragmentation. In the range of low HOCl/OCl- concentrations (up to 1 mM) 10-90 kDa peptides are predominant whereas massive production of shorter peptides was observed for high (5 mM) hypochlorite concentration. DLS measurements showed that chlorination with HOCl/OCl- decreases the radius of collagen II aggregates from 30 to 6.8 nm. Taking into account the fact that chlorinated collagen is partially degraded, the DLS results suggest that smaller micelles are formed of the 10-90 kDa peptide fraction. Moreover, collagen chlorination results in epitope modification which affects CII recognition by anti-CII antibodies. Finally, since in the synovial fluid the plausible hypochlorite concentration is smaller than that used in the model the change of size of molecular aggregates seems to be the best marker of hypochlorite-mediated collagen oxidation.
EN
Colloidal solutions of chitosan of crab origin with the addition of collagen obtained from cowhide were studied. Were presents the influence of collagen concentration and the method of preparing the sample on the obtained mechanical properties of the solutions and the observed phase transition temperature. Rheological measurements were performed to determine the viscoelastic properties and phase transition temperatures of these solutions. The study was conducted in the temperature range of 5–60°C with the use of classical techniques of rotational rheometry in the cone-plate measurement system. A significant influence of a collagen addition to chitosan chloride solutions on the viscoelastic properties of the systems was observed. The addition of collagen in all the cases increased the sol–gel phase transition temperature in comparison with the chitosan chloride solution containing β-glycerophosphate.
PL
W okresie ostatnich kilkunastu lat wiedza na temat roli biologicznej kolagenu w metabolizmie ustroju człowieka rozwinęła się znacząco. Sprawia to, że zrozumienie mechanizmów etiopatogenetycznych i fizjopatologicznych prowadzących do rozwoju licznych chorób związanych z układem mięśniowo-szkieletowym obejmujących kości, ścięgna, więzadła, mięśnie, powięzie lub tkankę chrzęstną – w tym chorobę zwyrodnieniową stawów będącą tematem niniejszego doniesienia – pozwala na skuteczne wprowadzenie do leczenia. Kolagen stanowi ok. 30% masy wszystkich białek organizmu człowieka, co daje ok. 6% całkowitej masy ciała. Rola kolagenu w leczeniu choroby zwyrodnieniowej stawów jest już dostatecznie udowodniona, zwiększyła się dostępność do nowych generacji preparatów leczniczych zawierających kolagen stosowanych doustnie, przezskórnie czy drogą iniekcji. O ile preparaty kolagenowe w formie tabletek, maści, kremów itp. są znane, dostępne powszechnie na rynku farmaceutycznym i skutecznie stosowane już od wielu lat, to preparaty stosowane w formie iniekcji, opracowane w oparciu o rzetelną i wiarygodną podbudowę naukową, nie są jeszcze wystarczająco upowszechnione wśród specjalistów ortopedii lub reumatologii. Zaprezentowane w niniejszej publikacji wyniki wielokierunkowych najnowszych badań naukowych, które potwierdzają skuteczność terapeutyczną nowych generacji iniekcyjnych preparatów medycznych zawierających w swoim składzie kolagen sprawi, że w kompleksowym leczeniu choroby zwyrodnieniowej stawów zajmą należne im miejsce – zarówno w aspekcie działania przeciwbólowego, odzyskania sprawności funkcjonalnej, jak również wpływu na regenerację tkanek na poziomie molekularnym.
EN
During the last several years the knowledge of the biological role of collagen in human body metabolism has significantly increased. Therefore, understanding the etiopathogenetic and physio-pathological mechanisms, leading to the development of multiple conditions affecting the musculoskeletal system including bones, tendons, ligaments, facias and cartilaginous tissue, including osteoarthritis which is the topic of the presented paper, enables effective introduction of collagen into treatment. Collagen makes about 30% of the mass of all proteins in the human body, which is about 6% of body mass. The role of collagen in the treatment of osteoarthritis has been sufficiently proved and the availability of new generation therapeutic preparation containing collagen for oral and transdermal administration or through injections has increased. While collagen supplements in a form of pills, ointments or creams are well-known, widely available on pharmaceutical markets and have been successfully administered for many years, using collagen in a form of injections, developed on the basis of a reliable research findings, have not been yet sufficiently widespread among the specialists in orthopedics and rheumatology. Presentation of the results of the latest multidirectional research presented in this paper, confirming the therapeutic efficacy of new generation injective medications containing collagen, will contribute to an increased use of such medications, both due to its analgesic effect and helping patients regain functional fitness, and due to its effect on tissue regeneration at the molecular level.
|
2003
|
vol. 50
|
issue 4
1119-1128
EN
Direct interactions between collagen, the most thrombogenic component of the extracellular matrix, and platelet surface membrane receptors mediate platelet adhesion and induce platelet activation and aggregation. In this process two glycoproteins are crucial: integrin α2β1, an adhesive receptor, and GPVI, which is especially responsible for signal transduction. Specific antagonists of the collagen receptors are useful tools for investigating the complexity of platelet-collagen interactions. In this work we assessed the usefulness of DGEA peptide (Asp-Gly-Glu-Ala), the shortest collagen type I-derived motif recognised by the collagen-binding integrin α2β1, as a potential antagonist of collagen receptors. We examined platelet function using several methods including platelet adhesion under static conditions, platelet function analyser PFA-100TM, whole blood electric impedance aggregometry (WBEA) and flow cytometry. We found that DGEA significantly inhibited adhesion, aggregation and release reaction of collagen activated blood platelets. The inhibitory effect of DGEA on static platelet adhesion reached sub-maximal values at millimolar inhibitor concentrations, whereas the specific blocker of α2β1 - monoclonal antibodies Gi9, when used at saturating concentrations, had only a moderate inhibitory effect on platelet adhesion. Considering that 25-30% of total collagen binding to α2β1 is specific, we conclude that DGEA is a strong antagonist interfering with a variety of collagen-platelet interactions, and it can be recognised not only by the primary platelet adhesion receptor α2β1 but also by other collagen receptors.
EN
Textile products enriched with natural substances, e.g. hyaluronic acid, plant hydrolates, collagen and chitosan, may find wide application in cosmetics because of increasing consumer interest in natural products. Furthermore, in view of global environmental pollution, products that are produced through biochemical changes as a result of composting are sought. This makes it possible to enter such designed cosmetic products into the scheme of the currently desired circular economy. Compostable textiles are an ecological alternative to product backlogs and polluting the environment in the form of post-consumer waste. Therefore, this research work developed a technology for applying natural substances on a biodegradable polyester fibrous substrate. This study developed the optimal composition of a mixture consisting of natural substances with properties applicable to the cosmetic industry, for applications such as cosmetic masks to improve the appearance of the skin. The composition of active substances that have beneficial effects on the skin, e.g. moisturizing, regenerating, antibacterial and caring, was determined. The mixture was effectively applied on a spunbound nonwoven substrate of made from aliphatic-aromatic copolyester by impregnation. The employed polymer degraded in a compost environment and its modifiers additionally supported this process. The unique composition of the applied coating layer consisted of a mixture of sodium hyaluronate, collagen, bitter orange blossom hydrolate (Neroli) and chitosan lactate. The coated nonwoven fabric was subjected to physical, mechanical, microbiological as well as chemical purity and structural tests (Fourier transform infrared spectroscopy and scanning electron microscopy) and degree of degradation in a compost environment was assessed on the basis of its weight loss.
EN
We obtained binary polyelectrolyte complexes containing chitosan from Bombyx mori and collagen with a mass ratio of 10:1; 10:2, and 10:3. During the interaction between the macromolecules, due to the compensation of the positive charges of chitosan with the negative charges of collagen, the zeta potential of the solutions of polyelectrolyte complexes changed from +15.2 to +5.67 mV. We revealed the dependence of the size characteristics of the particles of polyelectrolyte complexes on time and the ratio of macromolecules. An examination of the morphology of the films of polyelectrolyte complexes demonstrated that in the evaluated chitosan/collagen mass ratios, non-spherical nanosized particles up to ≤ 60 nm form on the surface of the films. We evaluated the mechanism of formation of complexes by using Fourier-transform infrared spectroscopy and confirmed the findings with density functional theory and molecular dynamics. We found that the particle diameter is inversely proportional to the diffusion coefficient. The results show that the particles are almost uniformly distributed over the surface of the polymer matrix and have a unimodal character. We obtained reproducible results when using a chitosan/collagen mass ratio of 10:2 to dye natural silk. We found that the complexes contribute to increase the intensity and stability of colour relative to soap and friction.
EN
The added value of nilem fish skin needs to be increased. The purpose of this study is to determine the concentration of acetic acid solution combined with the pepsin enzyme in the extraction of collagen from nilem fish skin that is necessary to obtain the highest yield/renderment. The study employed an experimental research method that used a completely randomized factorial design. The first treatment is the concentration of acetic acid solution. This consists of three levels, namely 0.5M, 0.7M and 0.9M. The second treatment is the concentration of the enzyme pepsin. This in turn consists of three levels, namely 0.5 %, 1.0 % and 1.5% (weight / weight). The parameters observed were collagen renderment. The results showed that the combination treatment concentration of 0.7 M solution of acetic acid by the pepsin enzyme at 1.0%, in the extraction of collagen from fish skin, produce the highest yield compared to other combinations. The renderment yield is 6.18%.
EN
Breast cancer is a leading cause of mortality and morbidity in women, mostly due to high metastatic capacity of mammary carcinoma cells. It has been revealed recently that metastases of breast cancer comprise a fraction of specific stem-like cells, denoted as cancer stem cells (CSCs). Breast CSCs, expressing specific surface markers CD44+CD24-/lowESA+ usually disseminate in the bone marrow, being able to spread further and cause late metastases. The fundamental factor influencing the growth of CSCs is the microenvironment, especially the interaction of CSCs with extracellular matrix (ECM). The structure and function of ECM proteins, such as the dominating ECM protein collagen, is influenced not only by cancer cells but also by various cancer treatments. Since surgery, radio and chemotherapy are associated with oxidative stress we analyzed the growth of breast cancer CD44+CD24-/lowESA+ cell line SUM159 cultured on collagen matrix in vitro, using either native collagen or the one modified by hydroxyl radical. While native collagen supported the growth of CSCs, oxidatively modified one was not supportive. The SUM159 cell cultures were further exposed to a supraphysiological (35 µM) dose of the major bioactive lipid peroxidation product 4-hydroxynonenal (HNE), a well known as 'second messenger of free radicals', which has a strong affinity to bind to proteins and acts as a cytotoxic or as growth regulating signaling molecule. Native collagen, but not oxidised, abolished cytotoxicity of HNE, while oxidized collagen did not reduce cytotoxicity of HNE at all. These preliminary findings indicate that beside direct cytotoxic effects of anticancer therapies consequential oxidative stress and lipid peroxidation modify the microenvironment of CSCs influencing oxidative homeostasis that could additionally act against cancer.
20
61%
|
2014
|
vol. 61
|
issue 1
55-62
EN
Keratoconus (KC) is a corneal disease associated with structural abnormalities in the corneal epithelium, Bowman's layer and stroma and altered concentration of tear components. KC corneas show a different pattern of collagen lamellae than their normal counterparts. Also, a reduction of several collagen types in KC epithelium and stroma was observed. Altered expression and/or activity of lysyl oxidase, a critical enzyme of the biogenesis of connective tissue detected in KC corneas, may weaken covalent bonds between collagen and elastin fibrils, what may lead to biomechanical deterioration of the cornea. Increased activity of matrix metalloproteinases observed in KC may induce the degradation of the extracellular matrix causing damage to the cornea. Oxidative and nitrative stress play an important role in KC pathogenesis and KC corneas are characterized by the disturbed lipid peroxidation and nitric oxide pathways. Malfunctioning of these pathways may lead to accumulation of their toxic by-products inducing several detrimental effects, along with apoptosis of the corneal cells, which may result from the loss of β-actin or increased levels of cytokines, including interleukin-1 and -6. Change in the expression of genes associated with wound healing, including the nerve growth factor and the visual system homeobox 1, may contribute to increased susceptibility of KC corneas to injury. Consequently, biochemical changes may play an important role in KC pathophysiology and, therefore, can be considered in prevention, diagnosis, prognosis and in the therapy of this disease as well.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.