Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  chlorination
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2001
|
vol. 48
|
issue 1
271-275
EN
N-acetyl-L-tyrosine (N-acTyr), with the alpha amine residue blocked by acetylation, can mimic the reactivity of exposed tyrosyl residues incorporated into polypeptides. In this study chlorination of N-acTyr residue at positions 3 and 5 in reactions with NaOCl, chloramines and the myeloperoxidase (MPO)-H2O2-Cl- chlorinating system were invesigated. The reaction of N-acTyr with HOCl/OCl- depends on the reactant concentration ratio employed. At the OCl-/N-acTyr (molar) ratio 1:4 and pH 5.0 the chlorination reaction yield is about 96% and 3-chlorotyrosine is the predominant reaction product. At the OCl-/ N-acTyr molar ratio 1:1.1 both 3-chlorotyrosine and 3,5-dichlorotyrosine are formed. The yield of tyrosine chlorination depends also on pH, amounting to 100% at pH 5.5, 91% at pH 4.5 and 66% at pH 3.0. Replacing HOCl/OCl- by leucine/chloramine or alanine/chloramine in the reaction system, at pH 4.5 and 7.4, produces trace amount of 3-chlorotyrosine with the reaction yield of about 2% only. Employing the MPO-H2O2-Cl- chlorinating system at pH 5.4, production of a small amount of N-acTyr 3-chloroderivative was observed, but the reaction yield was low due to the rapid inactivation of MPO in the reaction system. The study results indicate that direct chlorination of tyrosyl residues which are not incorporated into the polypeptide structure occurs with excess HOCl/OCl- in acidic media. Due to the inability of the myeloperoxidase-H2O2-Cl- system to produce high enough HOCl concentrations, the MPO-mediated tyrosyl residue chlorination is not effective. Semistable amino-acid chloramines also appeared not effective as chlorine donors in direct tyrosyl chlorination.
2
88%
EN
The main factors influencing the selectivity of chlorophenols synthesis were described. The loss of raw materials and the composition of wastes obtained in a conventional technology of 2,4-D production based on 2,4-dichlorophenol (2,4-DCP) of the 89% purity were presented. The influence of some homogenous catalysts on the selectivity of 2,4-dichlorophenol obtained in phenol and chlorine reaction was examined. Using the combined catalyst enables to chlorinate selectively the monochlorophenols to 2,4-DCP without an undesirable increasing of the 2,6-dichlorophenol and 2,4,6-trichlorophenol contents. The catalyst transformations during the reaction of phenol chlorination were investigated and the method of its elimination after the reaction was elaborated.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.