Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  chitosan beads
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, we evaluated the effectiveness of cadmium and zinc adsorption and desorption from solutions containing single metals and a mixture of metals in the ratio of 1:2 by activated sludge immobilized onto chitosan (ASC). The optimal pH value determined for metals adsorption ranged from pH 5 to pH 6, whereas that established for desorption reached pH 2. In the case of individual metals, the state of adsorption equilibrium in the solution was achieved after 180 min, whereas in the case of a metal mixture – after 270 min. In the case of desorption, the state of equilibrium was achieved after 45 min. It was stated that both adsorption and desorption proceeded according to the pseudo-second order reaction. The study enabled determining the maximum adsorption capacity based on Langmuir, Freundlich and Sips models. The Sips model was found suitable for the description of adsorption of single metals onto ASC, whereas both Sips and Freundlich models – for description of the adsorption of a metal mixture, which was indicated by the determined values of R2 coefficient. The adsorption capacity of ASC determined from Sips model for individual solutions of cadmium and zinc reached 216 and 188.3 mg/g d.m., respectively, whereas that determined for their mixture reached 106 mg/g d.m. for both metals.
EN
In this study, we investigated the effect of chitosan crosslinking with sodium edetate (SE) on its sorption capacity of Reactive Black 5 and Reactive Yellow 84 dyes. The first stage of the study allowed establishing conditions of chitosan crosslinking. The process of ionic crosslinking was effective only at pH 4 and at the optimal dose of sodium edetate ranging from 0.046 to 0.462 g/g CHs. Process temperature in the range of 20-60oC had no significant effect on the stability of crosslinked chitosan. Contrary to the non-crosslinked chitosan (CHs), chitosan crosslinked with sodium edetate (CHs-SE) was capable of dyes sorption at pH 3. Sorption of reactive onto both CHs and CHs-SE was the most effective at pH 4. Chitosan crosslinking with SE had a positive effect on the effectiveness of RB5 and RY84 sorption. This effect was especially tangible within the first ten or so hours of sorption. After 24 h of the process, the sorption capacity of CHs-SE against RB5 and RY84 reached 1296.69 mg/g and 1883.62 mg/g, respectively. In the case of CHs, sorption capacity achieved after the same time was lower and accounted for 1025.55 mg RB5/g and 1539.67 mg RY84/g.
EN
This study was aimed at determining the possibility of applying non-cross-linked chitosan (CHs) as well as chitosan cross-linked with glutaraldehyde (CHs-GLA) and epichlorohydrin (CHSECH) for the removal of nitrates (V) from aqueous solutions. The scope of the study included determinations of: optimal pH value of nitrates sorption (from pH range of 2-11), equilibrium time of sorption process, and maximum N-NO3 sorption capacity of the analysed chitosan sorbents. Kinetics of nitrates sorption was described with pseudo-first and pseudo-second order equations, and with the intraparticle diffusion model. Sorption capacity analysis was conducted with the heterogeneous Langmuir model, the double Langmuir model and the Freundlich model. The optimal pH value of N-NO3 sorption onto CHs-GLA and CHs-ECH was pH 3, whereas onto CHs this was pH 4. The equilibrium time of sorption reaction was the same for all chitosan sorbents and reached 120 min. The maximum sorption capacity of CHs, CHs-GLA and CHs- ECH accounted for 12.71 mg N-NO3/g, 34.99 mg N-NO3/g and 38.47 mg N-NO3/g.
EN
The study was undertaken to analyze the effect of chitosan cross-linking with glutaraldehyde on the adsorption capacity of chitosan beads during adsorption of Reactive Black (RB5) and Basic Green (BG4) dyes. Analyses were conducted at three pH values: pH 3.0; 5.0 and 9.0. Results obtained were evaluated with the use of four models of adsorption isotherms  Freundlich, Langmuir, Double Langmuir and Redlic-Petreson. The cross-linking of beads with glutaraldehyde turned out to be beneficial for the anionic dye RB5. Compared to the non-cross-linked beads, a comparable adsorption capacity (over 500 mg/g d.m.) was obtained at pH 3.0 and pH 5.0. In the case of the cationic dye, chitosan cross-linking reduced the quantity of adsorbed dye, irrespective of the pH value of the adsorption process.
EN
The study was established to analyze the effectiveness of Reactive Black (RB5) and Basic Green (BG4) dyes adsorption onto chitosan beads and onto chitosan beads cross-linked with glutaraldehyde depending on the initial dye concentration in the solution (1, 5, 100 and 200 mg/dm3). It demonstrated that both the initial concentration of dye in the solution as well as the type of adsorbent affected the effectiveness of the adsorption process. An increase in the initial dye concentration in the solution was increasing adsorption effectiveness, irrespective of the type of dye and adsorbent. The cross-linking of chitosan beads with glutaraldehyde turned out to be beneficial only in the case of the RB5 dye.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.