Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  chemical vapor deposition CVD
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Fe-Co/MgO is one of the most common catalyst mix applied to carbon nanotubes (CNTs) growth in chemical vapor deposition process. Therefore, here we present detailed study on the preparation and characterization of Fe-Co/MgO. The precursors of Fe and Co are iron (II) acetate and cobalt acetates, correspondingly. The molar ratio of the catalyst mix is Fe:Co:MgO=1:1:100. Initially, thermogravimetric analysis (TGA) of the mixture was performed. TGA analysis of it indicated the stepwise mass losses which pointed out the crucial thermal conditions for the changes in the elemental composition, morphology, crystallographic structure and vibrational properties. In current state of the art the lowest growth temperature for singlewalled carbon nanotubes is 550°C in CVD technique and here the characterization of the catalyst mix strongly suggest that this temperature can be decreased what would enhance the compatibility of CNT growth with current complementary metal-oxide-silicon (CMOS) technology for CNTs-based nanoelectronics. The morphology, crystallographic structure, elemental composition of the samples and its spectroscopic properties were performed via high resolution transmission electron microscopy (TEM), X-ray diffraction (XRD) and Infrared spectroscopy (IR), respectively.
EN
This work presents the results of the synthesis of carbon nanotubes using the CVD method. Fe: MgO catalyst was used, also in combination with rare earth elements (gadolinium (Gd), dysprosium (Dy)), which when used alone, are not efficient as catalysts in nanotube growth. Synthesis was performed both at reduced pressure (10-3 mbar) and atmospheric pressure, with constant parameters dependent on the process parameters.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.