Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  chemical vapor deposition
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Fluorine doped tin oxide (FTO) thin films were deposited onto glass substrate at different substrate temperatures by a simple and inexpensive method of air pressure chemical vapor deposition. The substrate temperature was kept constant at about 500°C as the optimum temperature, and air was used as both a carrier gas and the oxidizing agent. A very simple method of characterization were carried on to investigate the electrical and structural properties of the prepared thin films. The electrical parameters variations showed that these parameters vary with substrate temperature ranging from an insulator thin film to a highly conductive layer. X-ray diffraction also revealed the structure to be polycrystalline at higher temperatures compared to amorphous structure for lower temperatures.
EN
Transition metal catalysts (mainly: iron, cobalt and nickel) on various supports are successfully used in a largescale production of carbon nanotubes (CNTs), but after the synthesis it is necessary to perform very aggressive purification treatments that cause damages of CNTs and are not always effective. In this work a preparation of unsupported catalysts and their application to the multi-walled carbon nanotubes synthesis is presented. Iron, cobalt and bimetallic iron-cobalt catalysts were obtained by co-precipitation of iron and cobalt ions followed by solid state reactions. Although metal particles were not supported on the hard-to-reduce oxides, these catalysts showed nanometric dimensions. The catalysts were used for the growth of multi-walled carbon nanotubes by the chemical vapor deposition method. The syntheses were conducted under ethylene - argon atmosphere at 700°C. The obtained catalysts and carbon materials after the synthesis were characterized using transmission electron microscopy (TEM), X-ray diffraction method (XRD), Raman spectroscopy and thermogravimetric analysis (TG). The effect of the kind of catalyst on the properties of the obtained carbon material has been described.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.