Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  cellulose
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The cellulose matrix was characterized by FTIR, 13C NMR, XRD, TG, SEM and applied in the removal of the reactive red RB dye in an aqueous medium, with a capacity of adsorption at a pH of 2.0, and an adsorption equilibrium time which was reached at around 200 mins. The kinetic study for the system followed the Elovich model. The adsorption isotherms for the system at temperatures of 35°C, 45°C, and 55°C were adjusted to the Langmuir, Freundlich, Sips, and Redlich-Peterson non-linear models, with a capacity of adsorption for adsorbent of 5.97 mg g-1, 5.64 mg g-1, and 4.62 mg g-1, respectively. The adsorption occurred by electrostatic interactions and it was favorable and spontaneous, with the influence of temperature.
EN
Regenerated cellulose was prepared from plantain pseudo stem obtained in Uyo, Akwa Ibom State. The pulp prepared with 12% NaOH had moisture content of 8.8% and a yield of 36.9% on the average. The pulp was bleached and exposed to air to form “white crumbs”. The aged crumbs was mixed with carbon disulphide at a controlled temperature of 30 °C to form cellulose xanthate (C6H9O4–S–SNa)n. This was then converted to regenerated cellulose by way of further treatment with tetraoxosulphate (VI) acid at a yield of 36.4%. This work has revealed that plantain pseudo stem waste can be converted to regenerated cellulose for diverse applications.
|
2015
|
vol. 62
|
issue 3
395-400
EN
Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs.
EN
The aim of this study was to evaluate the influence of the surface microstructure of chitosan films on the contact angle. Films without plasticising additives made of chitosan or regenerated chitosan were selected for the tests. A sessile drop method based on the European Pharmacopoeia was used to determine the contact angle. Due to the method of film production, the contact angle measurements were made on both the top and bottom surfaces of the film. For chitosan or regenerated chitosan films, the method of preparation slightly affected the difference in wettability between the top and bottom of the films, as confirmed by scanning electron microscopy. On the other hand, the wettability of the top and bottom of cellulose films varied greatly depending on the side of the film. Both chitosan and cellulose films had a homogeneous structure. There were differences in the microstructure between the top and the bottom of the sample in the cellulose film, a factor that affected the contact angle and thus the wettability of the surface.
5
88%
EN
Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS), an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI), horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA), and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.
EN
The work is on the production of spindle palm petiole fiber reinforced high density polyethylene (HDPE) composites. The Spindle Palm Petiole Fiber (SPPF) and HDPE composites were produced using injection molding machine. SPPF were characterized to determine their chemical compositions. Central Composite Design (CCD) was applied as an optimization tool of RSM for cellulose and tensile strength. The chemical composition of the SPPF is cellulose (65%), hemicelluloses (17.1%) and lignin (14.1%). Surface modifications of the fiber enhanced the properties of the fiber. Quadratic model adequately described the relationship between percentage cellulose yield and variables: chemical concentration, mass/volume ratio and time. The cellulose content at optimal level is 60.3% at 3.5wt% concentration, 4g/l mass/volume ratio and time of 16hr. Also for the composite, the quadratic model described the relationship between tensile strength and temperature, fiber/polymer ratio and time. The optimum tensile strength of 42.0 Mpa was obtained at fiber/polymer ratio of 29wt%, temperature of 172 °C and time of 10 min. Water absorbed by the untreated fiber was high compared to the chemically treated fiber. The chemical treatment created a better interfacial bonding of SPPF/HDPE and this could be responsible for the observations.
|
2019
|
vol. 24
145 - 150
EN
Chitosan–cellulose gel beads were regenerated from an ionic liquid, and their application to a metal adsorbent was examined. The chitosan–cellulose gel beads, which were prepared from 1-ethyl-3-methyl imidazolium acetate, were more stable in the acidic and basic aqueous solutions than cellulose or chitosan. The adsorption of copper on chitosan–cellulose gel beads was examined, and the adsorption amount of copper ion increased with pH, suggesting that amino groups on chitosan were related to adsorption. The adsorption isotherm of copper, zinc, and nickel ions was well described by the Langmuir model, and the adsorption ability of these metal ions obeyed the Irving-Williams series. Fe3+, Mn2+, and Co2+ from a buffer solution and Pt4+, Au3+, and Pd2+ from a hydrochloric acid solution were not adsorbed on the chitosan–cellulose gel beads.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.