Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  cell wall
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Dimethylallyl diphosphate, an isomer of isopentenyl diphosphate, is a common substrate of Mod5p, a tRNA modifying enzyme, and the farnesyl diphosphate synthase Erg20p, the key enzyme of the isoprenoid pathway. rsp5 mutants, defective in the Rsp5 ubiquitin-protein ligase, were isolated and characterized as altering the mitochondrial/cytosolic distribution of Mod5p. To understand better how competition for the substrate determines the regulation at the molecular level, we analyzed the effect of the rsp5-13 mutation on Erg20p expression. The level of Erg20p was three times lower in rsp5-13 compared to the wild type strain and this effect was dependent on active Mod5p. Northern blot analysis indicated a regulatory role of Rsp5p in ERG20 transcription. ERG20 expression was also impaired in pkc1Δ lacking a component of the cell wall integrity signaling pathway. Low expression of Erg20p in rsp5 cells was accompanied by low level of ergosterol, the main end product of the isoprenoid pathway. Additionally, rsp5 strains were resistant to nystatin, which binds to ergosterol present in the plasma membrane, and sensitive to calcofluor white, a drug destabilizing cell wall integrity by binding to chitin. Furthermore, the cell wall structure appeared abnormal in most rsp5-13 cells investigated by electron microscopy and chitin level in the cell wall was increased two-fold. These results indicate that Rsp5p affects the isoprenoid pathway which has important roles in ergosterol biosynthesis, protein glycosylation and transport and in this way may influence the composition of the plasma membrane and cell wall.
|
2015
|
vol. 62
|
issue 4
807-819
EN
In the course of infections caused by pathogenic yeasts from the genus Candida, the fungal cell surface is the first line of contact with the human host. As the surface-exposed proteins are the key players in these interactions, their identification can significantly contribute to discovering the mechanisms of pathogenesis of two emerging pathogens from this genus, C. parapsilosis and C. tropicalis. Therefore, the aim of the present study was to identify the cell wall-attached proteins of these two species with the use of cell surface shaving and a shotgun proteomic approach. Different morphological forms of C. parapsilosis and C. tropicalis cells obtained after growth under various conditions were subjected to this treatment. This allowed to indicate the most abundant cell surface proteins on the basis of the normalized spectral abundance factors. In case of yeast-like forms these were, among others, proteins similar to a chitinase, glyceraldehyde-3-phosphate dehydrogenase and an inducible acid phosphatase for C. parapsilosis, and a constitutive acid phosphatase, pyruvate decarboxylase and glyceraldehyde-3-phosphate dehydrogenase for C. tropicalis. In case of pseudohyphal forms, proteins similar to a cell surface mannoprotein Mp65, chitinase and glycosylphosphatidylinositol-anchored transglycosylase Crh11 were identified at the cell surface of C. parapsilosis. The Rbt1 cell wall protein, a hyphally regulated cell wall protein and proteins from agglutinin-like sequence protein family were found as the most abundant on C. tropicalis pseudohyphae. Apart from the abovementioned proteins, several additional covalently bound and atypical cell wall proteins were also identified. These results extend the current knowledge regarding the molecular basis of virulence of these two non-albicans Candida species.
3
Content available remote

Organismal view of a plant and a plant cell.

75%
|
2001
|
vol. 48
|
issue 2
443-451
EN
Cell walls are at the basis of a structural, four-dimensional framework of plant form and growth time. Recent rapid progress of cell wall research has led to the situation where the old, long-lasting juxtaposition: "living" protoplast - "dead" cell wall, had to be dropped. Various attempts of re-interpretation cast, however, some doubts over the very nature of plant cell and the status of the walls within such a cell. Following a comparison of exocellular matrices of plants and animals, their position in relation to cells and organisms is analysed. A multitude of perspectives of the biological organisation of living beings is presented with particular attention paid to the cellular and organismal theories. Basic tenets and resulting corollaries of both theories are compared, and evolutionary and developmental implications are considered. Based on these data, "The Plant Body" - an organismal concept of plants and plant cells is described.
4
75%
|
2015
|
vol. 62
|
issue 3
339-351
EN
A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.
EN
Hydrogen peroxide (H2O2) is produced predominantly in plant cells during photosynthesis and photorespiration, and to a lesser extent, in respiration processes. It is the most stable of the so-called reactive oxygen species (ROS), and therefore plays a crucial role as a signalling molecule in various physiological processes. Intra- and intercellular levels of H2O2 increase during environmental stresses. Hydrogen peroxide interacts with thiol-containing proteins and activates different signalling pathways as well as transcription factors, which in turn regulate gene expression and cell-cycle processes. Genetic systems controlling cellular redox homeostasis and H2O2 signalling are discussed. In addition to photosynthetic and respiratory metabolism, the extracellular matrix (ECM) plays an important role in the generation of H2O2, which regulates plant growth, development, acclimatory and defence responses. During various environmental stresses the highest levels of H2O2 are observed in the leaf veins. Most of our knowledge about H2O2 in plants has been obtained from obligate C3 plants. The potential role of H2O2 in the photosynthetic mode of carbon assimilation, such as C4 metabolism and CAM (Crassulacean acid metabolism) is discussed. We speculate that early in the evolution of oxygenic photosynthesis on Earth, H2O2 could have been involved in the evolution of modern photosystem II.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.