Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 15

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  catalase
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Colorectal cancer (CRC) is a serious medical and economical problem of our times. It is the most common gastrointestinal cancer in the world. In Poland, the treatment and detection of CRC are poorly developed and the pathogenesis is still unclear. One hypothesis suggests a role of reactive oxygen species (ROS) in the pathogenesis of CRC. Experimental studies in recent years confirm the participation of ROS in the initiation and promotion of CRC.The aim of the study was to examine the effect of the following coordination compounds coordination compounds: dinitrate (V) tetra(3,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dichloro di(3,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dinitrate (V) di(1,4,5-trimethyl-N1-pyrazole-κN2) copper(II), dichloro di(1,3,4,5-tetramethyl-N1-pyrazole-κN2) copper(II) on the activity of antioxidant enzymes superoxide dismutase (SOD, ZnCu-SOD) and catalase (CAT) in a group of patients with colorectal cancer (CRC) and in the control group consisting of patients with minor gastrointestinal complaints.Material and methods. The study was conducted in 20 patients diagnosed with colorectal cancer at the age of 66.5±10.2 years (10 men and 10 women) versus the control group of 20 people (10 men and 10 women) aged 57.89±17.10 years without cancer lesions in the biological material - hemolysate prepared in a proportion of 1ml of water per 1 ml of blood. CAT activity was measured by the Beers method (1952), while SOD activity was measured by the Misra and Fridovich method (1972).Results. We found that patients with CRC showed a statistically significant decrease of SOD and CAT activity (CAT - 12,75±1.97 U/g Hb, SOD - 1111.52±155.52 U/g Hb) in comparison with the control group (CAT - 19.65±2,17 U/g Hb, SOD - 2046.26±507.22 U/g Hb). Simultaneously, we observed that the investigated coordination compounds of Cu(II) significantly increased the antioxidant activity of CAT and SOD in patients with CRC (mean: CAT 25.23±4.86 U/g Hb, SOD - 3075.96±940.20 U/g Hb).Conclusions. Patients with colorectal cancer are characterized by reduced activity of antioxidant enzymes catalase and superoxide dismutase which suggests impaired antioxidant barrier. Therefore, coordination compounds of Cu (II), which enhance the activity of CAT and SOD, may prove useful in the prevention and treatment of colorectal cancer.
|
2017
|
vol. 64
|
issue 3
543-549
EN
Vibrio vulnificus is a virulent human pathogen causing gastroenteritis and possibly life threatening septicemia in patients. Most V. vulnificus are catalase positive and can deactivate peroxides, thus allowing them to survive within the host. In the study presented here, a catalase from V. vulnificus (CAT-Vv) was purified to homogeneity after expression in Escherichia coli. The kinetics and function of CAT-Vv were examined. CAT-Vv catalyzed the reduction of H2O2 at an optimal pH of 7.5 and temperature of 35°C. The Vmax and Km values were 65.8±1.2 U/mg and 10.5±0.7 mM for H2O2, respectively. Mutational analysis suggests that amino acids involved in heme binding play a key role in the catalysis. Quantitative reverse transcription-PCR revealed that in V. vulnificus, transcription of CAT-Vv was upregulated by low salinity, heat, and oxidative stresses. This research gives new clues to help inhibit the growth of, and infection by V. vulnificus.
3
88%
EN
Catalase with the commercial catalase name Terminox Ultra is widely used in the textile industry in bleaching processes. This enzyme is used to catalyse the decomposition of residual hydrogen peroxide into oxygen and water. In this study catalase was kept for about 30 hours in water baths in a temperature range from 35 to 70°C. For the first time, the kinetics of thermal deactivation of this enzyme was examined using an oxygen electrode. Stability of the enzyme depends strongly on temperature and its half-life times are 0.0014 h and 7.6 h, at 35 and 70°C, respectively.
5
75%
|
2001
|
vol. 48
|
issue 1
283-285
EN
Activities of superoxide dismutase, catalase and glutathione peroxidase in erythrocytes of cystic fibrosis children were studied in order to estimate the severity of their deficiency. Our results point to increased susceptibility of erythrocytes of cystic fibrosis subjects to oxidative injury and indicate that the antioxidant status of patients should be carefully monitored.
EN
A correlation is known to exist in yeast and other organisms between the cellular resistance to stress and the life span. The aim of this study was to examine whether stress treatment does affect the generative life span of yeast cells. Both heat shock (38°C, 30 min) and osmotic stress (0.3 M NaCl, 1 h) applied cyclically were found to increase the mean and maximum life span of Saccharomyces cerevisiae. Both effects were more pronounced in superoxide dismutase-deficient yeast strains (up to 50% prolongation of mean life span and up to 30% prolongation of maximum life span) than in their wild-type counterparts. These data point to the importance of the antioxidant barrier in the stress-induced prolongation of yeast life span.
EN
Depression, a major contributor to the global disease burden, occurs in both adults and children, and is associated with impaired antioxidant defense mechanisms. This study examined the effects of dimethyl fumarate (DMF), a fumaric acid ester with immunomodulatory, anti-inflammatory and antioxidant properties in murine models of depression. In the first phase of the study, mice were treated with the either the vehicle, 50 and 100 mg/kg DMF or 15 mg/kg imipramine and subjected to either the forced swim or tail suspension tests. Thereafter, mice were euthanized and levels of antioxidant markers in isolated brain tissues were assayed. In the second phase of the study, mice were subjected to the chronic unpredictable mild stress regimen for four weeks and treated with the vehicle, DMF or imipramine in the last two weeks of the stress protocol. Forced swim and percentage sucrose preference tests were used for behavioural evaluations. Mice were sacrificed, brain levels of catalase, glutathione, thiobarbituric reactive acid substance and nitrite were quantified. Treatment with DMF significantly (p<0.05) reduced periods of immobility in both the forced swim and tail suspension tests following acute and chronic drug treatment and improved sucrose consumption after exposure to chronic unpredictable mild stress. DMF also significantly improved (p<0.05) levels of antioxidants (catalase and glutathione) while reducing prooxidant biomarkers (thiobarbituric reactive acid substance and nitrite levels) in the brain. DMF ameliorated depression in mice and augmented the antioxidant defense mechanism in the brains of mice subjected to chronic unpredictable mild stress.
|
|
vol. 51
|
issue 1
219-222
EN
Cadmium (Cd), similarly to other heavy metals, inhibits plant growth. We have recently showed that Cd2+ either stimulates (1-4 μM) or inhibits (ł 6 μM) growth of soybean (Glycine max L.) cells in suspension culture (Sobkowiak & Deckert, 2003, Plant Physiol Biochem. 41: 767-72). Here, soybean cell suspension cultures were treated with various concentrations of Cd2+ (1-10 μM) and the following enzymes were analyzed by native electrophoresis: superoxide dismutase (SOD), catalase (CAT), peroxidase (POX) and ascorbate peroxidase (APOX). We found a significant correlation between the cadmium-induced changes of soybean cell culture growth and the isoenzyme pattern of the antioxidant enzymes. The results suggest that inhibition of growth and modification of antioxidant defense reactions appear in soybean cells when Cd2+ concentration in culture medium increases only slightly, from 4 to 6 μM.
EN
The inhibitory effect of para-nitrophenol on the catalytic reaction of catalase was investigated. Michaelis-Menten kinetic parameters were determined from Lineweaver-Burk plots obtained in the absence or in the presence of the inhibitor. The inhibitor pattern, revealed by the Lineweaver-Burk plots, suggested a fully mixed inhibition mechanism. Spectrophotometric monitoring of the indicator reaction: $$H_2 O_2 \xrightarrow{{catalase,para - nitrophenol}}H_2 O + \tfrac{1}{2}O_2 $$ in conjunction with initial rate measurements was employed for the kinetic determination of the inhibitor. Calibration plots of initial rate vs. para-nitrophenol concentration were linear in the concentration range 0.9·10−5–2.5·10−5 mol/L and the detection limit was 3·10−6 mol/L (417 μg/L) para-nitrophenol. Interferences from other phenolic compounds like orto-cresole, meta-and orto-nitrophenol were observed.
|
|
issue 4
723-727
EN
Previously, a stable cell suspension of cucumber tolerant to 100 µM CdCl2 was obtained (Gzyl & Gwóźdź, 2005, Plant Cell Tissue Organ Cult 80: 59-67). In this study, the relationship between the activity of antioxidant enzymes and cadmium tolerance of cucumber cells was analyzed. A cadmium-sensitive and the cadmium-tolerant cell lines were exposed to 100 µM and 200 µM CdCl2 and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX) and guaiacol peroxidase (POX) were determined. In the sensitive cell line, a decrease of total activity of SOD and POX was observed, whereas the activity of CAT and APOX significantly increased in metal-supplemented medium. By contrast, in the tolerant cells, the total activity of antioxidant enzymes decreased (SOD, CAT) or was maintained at approximately the same level (APOX, POX). Moreover, a different pattern of isoenzyme activity was observed in the tolerant and sensitive cells. These results suggest that an enhanced activity of antioxidant enzymes is not directly involved in the increased tolerance to cadmium of the selected cucumber cell line.
EN
INTRODUCTION The activity of antioxidant system enzymes in human semen might be age dependent, thus the quality of it may get worse. The aim of this study was to investigate the correlation between the age, catalase activity and iron concentration in seminal plasma and the influence of these factors on the quality of semen. MATERIALS AND METHODS Normospermic semen samples were obtained from 63 men (range, 22–37 years) and divided in two age groups: under 33 (group I) and over 33 years old (group II). The semen parameters, catalase activity and iron concentration were determined in seminal plasma. RESULTS We observed that in group II the iron concentration in seminal plasma increased but sperm motility (especially linear progressive motility) dropped with age. A lower semen volume showed a significant increase in catalase activity as well as iron concentration. Increasing catalase activity showed a significant positive relationship with better sperm quality. We found positive correlations between catalase activity and iron concentration. CONCLUSION Catalase has a protective effect on sperm cell membranes. Iron concentration in seminal plasma rises in an age dependent manner which may contribute to sperm cells damage.
PL
WSTĘP Aktywność enzymów wchodzących w skład układu antyoksydacyjego nasienia może w miarę starzenia organizmu ulec osłabieniu, co może być przyczyną obniżenia zdolności zapładniającej nasienia. Celem pracy było ustalenie, czy wraz z wiekiem zmieniają się aktywność katalazy i stężenie żelaza w nasieniu ludzkim i jak zmiany te wpływają na jego jakość. MATERIAŁ I METODY Materiał badany stanowiło nasienie o prawidłowej morfologii pobrane od 63 mężczyzn w wieku od 28 do 37 lat (grupa I – do 33 roku życia; grupa II – powyżej 33 roku życia). Wykonano badanie morfologiczne nasienia, oznaczono aktywność katalazy i stężenie żelaza w plazmie nasiennej. WYNIKI Stwierdzono, że wraz z wiekiem obniża się liczba plemników ruchliwych, zwłaszcza o ruchu linearnym, natomiast zwiększa się stężenie żelaza. Wraz ze spadkiem objętości nasienia wzrasta aktywność katalazy i stężenie żelaza, zaś wzrostowi aktywności katalazy towarzyszy wzrost stężenia ruchliwych plemników. Wykazano ponadto dodatnią korelację pomiędzy aktywnością katalazy a stężeniem żelaza. WNIOSKI Katalaza wykazuje działanie ochronne na błonę komórkową plemników. Stężenie żelaza w plazmie nasienia wzrasta u mężczyzn wraz z wiekiem, co może przyczyniać się do uszkodzenia plemników.
|
2001
|
vol. 48
|
issue 3
687-698
EN
Lead, similar to other heavy metals and abiotic factors, causes many unfavorable changes at the subcellular and molecular levels in plant cells. An increased level of superoxide anion in Pisum sativum root cells treated with 1 mM Pb(NO3)2 evidenced oxidative stress conditions. We found increased activities of enzymatic components of the antioxidative system (catalase and superoxide dismutase) in the cytosol, mitochondrial and peroxisomal fractions isolated from root cells of Pisum sativum grown in modified Hoagland medium in the presence of lead ions (0.5 or 1 mM). Two isoenzyme forms of superoxide dismutase (Cu,Zn-SOD and Mn-SOD) found in different subcellular compartments of pea roots were more active in Pb-treated plants than in control. Increased amount of alternative oxidase accompanied by an increased activity of this enzyme was found in mitochondria isolated from lead-treated roots. These results show that plants storing excessive amounts of lead in roots defend themselves against the harmful oxidative stress caused by this heavy metal.
EN
Pseudomonas aeruginosa is the most common cause of chronic and recurrent lung infections in patients with cystic fibrosis (CF) whose sputa contain copious quantities of P. aeruginosa toxin, pyocyanin. Pyocyanin triggers tissue damage mainly by its redox cycling and induction of reactive oxygen species (ROS). The reactions between reduced glutathione (GSH) and pyocyanin were observed using absorption spectra from spectrophotometry and the reaction products analysed by nuclear magnetic resonance imaging. Pyocyanin reacted with GSH non-enzymatically at 37°C resulting in the production of red-brown products, spectophotometrically visible as a 480 nm maximum absorption peak after 24 h of incubation. The reaction was concentration-dependent on reduced glutathione but not on pyocyanin. Minimizing the accessibility of oxygen to the reaction decreased its rate. The anti-oxidant enzyme catalase circumvented the reaction. Proton-NMR analysis demonstrated the persistence of the original aromatic ring and the methyl-group of pyocyanin in the red-brown products. Anti-oxidant agents having thiol groups produced similar spectophotometrically visible peaks. The presence of a previously unidentified non-enzymatic GSH-dependent metabolic pathway for pyocyanin has thus been identified. The reaction between pyocyanin and GSH is concentration-, time-, and O2-dependent. The formation of H2O2 as an intermediate and the thiol group in GSH seem to be important in this reaction.
|
2000
|
vol. 47
|
issue 4
951-962
EN
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (·OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating ·OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce ·OH. The addition of Fe2+ and Cu+ (0-20 μM) to KH resulted in a concentration-dependent increase in ·OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 μM) did not result in ·OH formation, these ions mediated significant ·OH production in the presence of a number of reducing agents. The ·OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 μM, 5 μM or 10 μM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in ·OH formation. For each Fe2+ concentration tested, the ·OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting ·OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the ·OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate ·OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.