Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  capacitance
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This contribution attempts to establish an easy-to-apply non-thermal plasma reactor for efficient toluene removal. Derived from the already established knowledge of the so called Dielectric Barrier Discharge (DBD) Stack Reactor a new model reactor was used in this work. The DBD Stack Reactor is a multi-elements reactor but in this work only one stack element was used to investigate the efficiency and efficacy of toluene removal. In case of reliable results the scalability process for industrial application is already well known. Therefore, laboratory experiments were conducted in dry and wet synthetic air with an admixture of 50 ppm toluene. Along with the toluene removal process the electrical behaviour of the discharge configuration was investigated. It was found that the electrical capacitance of the dielectric barrier changes with variations of the operating voltage. This could be due to the changes in the area of the dielectric barrier which is covered with plasma. Additionally, it was found that the power input into the plasma, at a fixed operating voltage, is proportional to the frequency, which is in agreement with the literature. Regarding the decomposition process, the total removal of toluene was achieved at specific input energy densities of 55 J L-1 under dry conditions and 110 J L-1 under wet conditions. The toluene removal was accompanied by the production of nitric acid (dry conditions) and formic acid (wet conditions). The latter suggested a combination of the plasma reactor with a water scrubber as an approach for total removal of pollutant molecules.
EN
The quality of the interface region in a semiconductor device and the density of interface states (DOS) play important roles and become critical for the quality of the whole device containing ultrathin oxide films. In the present study the metal-oxide-semiconductor (MOS) structures with ultrathin SiO2 layer were prepared on Si(100) substrates by using a low temperature nitric acid oxidation of silicon (NAOS) method. Carrier confinement in the structure produces the space quantization effect important for localization of carriers in the structure and determination of the capacitance. We determined the DOS by using the theoretical capacitance of the MOS structure computed by the quantum mechanical approach. The development of the density of SiO2/Si interface states was analyzed by theoretical modeling of the C-V curves, based on the superposition of theoretical capacitance without interface states and additional capacitance corresponding to the charges trapped by the interface states. The development of the DOS distribution with the passivation procedures can be determined by this method.
Open Physics
|
2006
|
vol. 4
|
issue 1
87-104
EN
The ac electrical parameters of thermally evaporated zinc phthalocyanine, ZnPc, semiconducting thin films was measured in the temperature range of 180–390 K and frequency between 0.1 and 20 kHz. Aluminum electrode contacts were utilized to sandwich the organic ZnPc semiconducting films. Capacitance and loss tangent decreased rapidly with frequency at high temperatures, but at lower temperatures a weak variation is observed. An equivalent circuit model assuming ohmic contacts could qualitatively and successfully explains capacitance and loss tangent behavior. The ac conductivity showed strong dependence on both temperature and frequency depending on the relevant temperature and frequency range under consideration. Ac conductivity σ (ω) is found to vary with ω, as ω s with the index s ≤ 1.35 suggesting a dominant hopping conduction process at low temperatures (< 250 K) and high frequency. The conductivity of some samples did not increase monotonically with temperature. This behavior was attributed to oxygen exhaustion of the sample as its temperature is increased. The ac conductivity behavior at low temperatures of ZnPc films could be described well by Elliott model assuming hopping of charge carriers between localized sites.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.