Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  calcium-binding proteins
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
|
2000
|
vol. 47
|
issue 3
517-528
EN
Cyclic GMP (cGMP), a key messenger in several signal transduction pathways, is synthesized from GTP by a family of enzymes termed guanylyl cyclases, which are found in two forms: cytosolic (soluble) and membrane-bound (particulate). The past decade has brought significant progress in understanding the molecular mechanisms that underlie the regulation of particulate guanylyl cyclases and new members of their family have been identified. It has become more evident that the basic mechanism of catalysis of guanylyl cyclases is analogous to that recognized in adenylyl cyclases. Here we review the known basic mechanisms that contribute to the regulation of particulate guanylyl cyclases.
EN
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca2+-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca2+. Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca2+-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca2+]gfree (10 μM) than at low [Ca2+]free (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca2+]free in recoverin and at low [Ca2+]free in GCAP2. Such different changes of hydrophobicity evoked by Ca2+ appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.
|
2002
|
vol. 49
|
issue 4
899-905
EN
The Ca2+-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 mM) concentrations of Ca2+. At low Ca2+, immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca2+-dependent electrophoretic mobility shift.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.