Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  boundary layer
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The influence of an incoming boundary layer to the standing morphology of an oblique detonation wave (ODW) induced by a compression ramp is numerically studied in this paper. The Spalart-Allmaras (SA) turbulence model is used to perform simulation of detonationboundary- layer interactions. Three different wall conditions are applied to realize control on the boundary-layer separation scales. Accordingly, different standing morphologies of the ODWs are obtained, including smooth ODW (without transverse wave) under no-slip, adiabatic wall condition with large-scale separation, abrupt ODW (with transverse wave) under no-slip, cold wall condition with moderate-scale separation, and bow-shaped detached ODW under slipwall condition without a boundary layer.
3
88%
Open Physics
|
2011
|
vol. 9
|
issue 5
1195-1202
EN
In this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0.
Open Physics
|
2014
|
vol. 12
|
issue 1
17-31
EN
To investigate the stability characteristic of hypersonic flow under the action of a freestream pulse wave, a high-order finite difference method was employed to do direction numerical simulation (DNS) of hypersonic unsteady flow over an 8° half-wedge-angle blunt wedge with freestream slow acoustic wave. The evolution of disturbance wave modes in the boundary layer under a pulse wave and a continuous wave are compared, and the wall temperature effect on the hypersonic boundary layer stability for a pulse wave disturbance is discussed. Results show that, both for a pulse wave and a continuous wave in freestream, the disturbance waves inside the nose boundary layer are mainly a fundamental mode; the Fourier amplitude of pressure disturbance mode in the boundary layer for a pulse wave is far less than that for a continuous wave, and the band frequency of the former is wider than that of the latter. All disturbance modes decay rapidly along the streamwise in the nose boundary layer. In the non-nose boundary layer, the dominant mode is transferred from fundamental mode into second harmonic. The transformation of dominant mode for a pulse wave appears much earlier than that for a continuous wave. Different frequency disturbance modes present different changes along streamline in the boundary layer, and the frequency band narrows around the second harmonic mode along the streamwise. Keen competition and the transformation of energy exist among different modes in the boundary layer. Wall temperature modifies the stability characteristic of the hypersonic boundary layer, which presents little effect on the development of fundamental modes and cooling wall could accelerates the growth of the high frequency mode as well as the dominant mode transformation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.