Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  boriding
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work, we present a study of the effect of diffusion annealing at 700°C for 1 h on the nature and properties of boride layers obtained on XC38 steel through a molten salt consisting of borax (Na₂B₄O₇) and boron carbide (B₄C). We evaluated the changes brought by the diffusion annealing on the morphology of the boride layer, the thickness of this layer, the distribution of elements in the steel, and the hardness. Comparing the results obtained allowed concluding that the diffusion annealing will completely transform the two-phase layer formed of FeB and Fe₂B borides in a single-phase layer consisting of single boride Fe₂B. The transformation of the two-phase boride into a single-phase boride is done with an increase in thickness of about 30% compared to the initial thickness of the sample. The values of Si concentration obtained in the underlying zone after the diffusion annealing treatment are more important than those obtained in the same underlying zone of samples borided directly by immersion in molten salt consisting of borax and silicon carbide (SiC).
2
100%
EN
Boriding is a thermochemical surface treatment used to improve corrosion and wear resistance of hardened steels. In this work, we study the effect of boriding treatment in solid medium on the cyclic fatigue resistance of C20 carbon steel. Specimens of untreated and borided C20 steel in a solid medium consisting of 5% B₄C, 5% NaBF₄ and 90% SiC were subjected to rotating-bend fatigue device. The results showed that the improvement in fatigue resistance carried by the boriding treatment on C20 steel is low. This was explained by the presence of FeB boride in addition to Fe₂B boride, which leads to surface cracking.
EN
In this study, pack boronizing was applied to ash-blowing nozzles manufactured from AISI 1040 steels using Ekabor II powders as the boronizing source at a temperature of 1273 K for a duration of 8 h. Erosive wear tests of boride ash-blowing nozzles were carried out in ash delivery line of thermal reactor under actual working conditions. It was observed that erosive wear resistance of borided ash-blowing nozzles were increased 3 times as a result of the boronizing process. The improved wear resistance of the borided samples can be explained by increased surface hardness and higher work hardening.
4
Content available remote

Diffusion Kinetics of Binary Ti-Ni Shape Memory Alloys

88%
EN
In this work, the boriding of binary Ti-Ni shape memory alloys was carried out in a solid medium at 1173 and 1273 K for 2, 4, and 8 h using the powder pack method with Ekabor-Ni powders. The boride layer was characterized by optical microscopy and scanning electron microscopy. The obtained results show that boride layer thickness increases with the increasing boriding temperature and time. Depending on temperature and boride layer thickness, the diffusion process is thermally activated, with the mean value of the activation energy being close to 67 kJ/mol.
EN
The present study has been conducted in order to obtaining chromium boride layers on carbon steel using a conversion processing comprising the following steps: boriding treatment in order to increase the amount of boron atoms in the steel surface, deposition of a thin layer of pure chromium using electrolytic method, and finally an annealing treatment for boron diffusion and formation of boride layer until complete transformation of chromium layer. Depending on the method used (chromium deposition followed by boriding or boriding followed by chromium deposition) and the holding time, the partial or complete conversion is obtained as a result of the diffusion process. The role of the annealing temperature on transformation rates of chromium into chromium boride films was investigated. It is shown that for 1 h at 900°C, the chromium layer is totally transformed. The scanning electron microscopy analysis and X-ray diffraction showed the presence of CrB and CrB₂ chromium borides in addition of FeB and Fe₂B iron borides.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.