Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  biomaterial
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Damage to the nervous system, in particular spinal cord injuries, is a burden for the patient and is usually the cause of irreversible disability. The progress observed in the last decade in the fields of biology, biomaterial engineering and neurosurgery has created new treatment solutions while preventing further neurodegenerative processes. The most important research is focused on the implementation of polymer structures in clinical practice, especially chitosan hydrogels, which are the scaffolds for regenerating axons. This article presents a new generation of biomaterials that have the ability to gel in response to temperature changes; they are intended for injectable scaffolds for nerve cell cultures. Two types of hydrogels were prepared based on chitosan lactate and chitosan chloride using uridine 5’-monophosphate disodium salt. The structure of the systems was observed under a scanning electron microscope and examined using Fourier transform infrared spectroscopy. In addition, thermal properties were tested using differential scanning calorimetry.
EN
The damage to the central nervous system is one of the most difficult cases of trauma to treat. Over the last few years, increasing attention has been focused on the development of strategies based on biomaterials for regeneration and repair of the spinal cord injury. In particular, materials in the form of hydrogels based on chitosan are being actively investigated due to their intrinsic properties that are favorable in spinal cord tissue regeneration. The purpose of this study was to develop a thermo-gelling chitosan solution that will be prepared with the use of acids that naturally occur in the human nervous tissue. For this purpose, two types of chitosan gels were prepared based on chitosan glutamate and chitosan lactate. In order to reduce toxic action of the system obtained gels were conditioned in distilled water with pH 5.00. The changes in the structures of systems obtained were determined with the use of FTIR method. Biocompatibility was primarily evaluated through cytotoxicity testing by MTT assay with respect to mouse fibroblast cells.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.