Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 14

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  antioxidant enzymes
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The study was designed to assess the antioxidant defense mechanisms, either enzymatic or non-enzymatic, in a group of sixteen centenarians (one male and fifteen female subjects aged 101 to 105 years) living in the Upper Silesia district (Poland) in order to evaluate the potential role of antioxidant defenses in human longevity. The results of our preliminary study showed that in comparison with young healthy female adults the centenarians had significantly higher red blood cell glutathione reductase and catalase activities and higher, although insignificantly, serum vitamin E level.
EN
Background: The aim of this study was to establish whether the gene expression of estrogen receptor alpha (encoded by ESR1) correlates with the expression of glutathione peroxidase 1 (encoded by GPX1) in the tumor and adjacent tumor-free breast tissue, and whether this correlation is affected by breast cancer. Such relationships may give further insights into breast cancer pathology with respect to the status of estrogen receptor. Methods: We used the quantitative real-time PCR technique to analyze differences in the expression levels of the ESR1 and GPX1 genes in paired malignant and non-malignant tissues from breast cancer patients. Results: ESR1 and GPX1 expression levels were found to be significantly down-regulated by 14.7% and 7.4% (respectively) in the tumorous breast tissue when compared to the non-malignant one. Down-regulation of these genes was independent of the tumor histopathology classification and clinicopathological factors, while the ESR1 mRNA level was reduced with increasing tumor grade (G1: 103% vs. G2: 85.8% vs. G3: 84.5%; p<0.05). In the non-malignant and malignant breast tissues, the expression levels of ESR1 and GPX1 were significantly correlated with each other (Rs=0.450 and Rs=0.360; respectively). Conclusion: Our data suggest that down-regulation of ESR1 and GPX1 was independent of clinicopathological factors. Down-regulation of ESR1 gene expression was enhanced by the development of the disease. Moreover, GPX1 and ESR1 gene expression was interdependent in the malignant breast tissue and further work is needed to determine the mechanism underlying this relationship.
EN
Oxidative stress is one of several factors which contribute to the development of colorectal carcinogenesis. The aim of the study was an assessment of the activity of antioxidant enzymes in tumour and corresponding normal distal mucosa in a group of patients with colorectal adenocarcinoma. Samples of tumour and corresponding normal mucosa were obtained during a resection of colorectal cancer from 47 patients aged between 26 and 82 years. The average distance of corresponding normal distal mucosa from the tumour was 4.49 cm. Activities of antioxidant enzymes: superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) were measured in tissue homogenates. The patients were grouped according to the tumour stage (Duke's staging), grading, localization, and size of tumour, as well as age and sex. Statistical analysis was performed. The activity of SOD and GPx was considerably increased, while the activity of GST decreased significantly in tumour as compared with normal mucosa. GR activity in colorectal cancer was evidently higher in tumours of proximal location compared with the distal ones. The distance of corresponding normal distal mucosa from the tumour was analyzed and related to all assayed parameters. A decreased GST activity was observed in corresponding normal mucosa more than 5 cm distant from the tumour in patients with CD Duke's stage. The higher activity of superoxide dismutase and glutathione peroxidase in tumour compared to corresponding normal mucosa could indicate higher oxidative stress in colorectal adenocarcinoma cells.
|
2013
|
vol. 60
|
issue 1
21-31
EN
Oxidative stress has been implicated as an important factor in the process of neurodegeneration and hydrogen peroxide (H2O2) is one of the most important precursors of reactive oxygen species (ROS), responsible for many neurodegenerative diseases. This study used extracts from Nardostachys jatamansi rhizomes, known for nerve relaxing properties in Ayurvedic medicine, to ascertain their protective role in H2O2-induced oxidative stress in C6 glioma cells. The protective effect of methanolic, ethanolic and water extracts of N. jatamansi (NJ-MEx, NJ-EEx and NJ-WEx respectively) was determined by MTT assay. NJ-MEx significantly protected against H2O2 cytotoxicity when cells were pretreated for 24 h. The level of antioxidant enzymes, catalase, superoxide dismutase (Cu-ZnSOD), glutathione peroxidase (GPx), and a direct scavenger of free radicals, glutathione (GSH), significantly increased following pre-treatment with NJ-MEx. Lipid peroxidation (LPx) significantly decreased in NJ-MEx-pretreated cultures. The expression of a C6 differentiation marker, GFAP (glial fibrillary acidic protein), stress markers HSP70 (heat shock protein) and mortalin (also called glucose regulated protein 75, Grp75) significantly decreased when cells were pre-treated with NJ-MEx before being subjected to H2O2 treatment as shown by immunofluorescence, western blotting and RT-PCR results. The present study suggests that NJ-MEx could serve as a potential treatment and/or preventive measure against neurodegenerative diseases.
EN
Particles generated from numerous anthropogenic and/or natural sources, such as crystalline α-Fe2O3 nanoparticles, have the potential to damage lung cells. In our study we investigated the effects of these nanoparticles (12.5 µg/ml) on lipid peroxidation and the antioxidative system in MRC-5 lung fibroblast cells following exposure for 24, 48 or 72h. Exposure to α-Fe2O3 nanoparticles increased lipid peroxidation by 81%, 189% and 110% after 24, 48 and 72h, respectively. Conversely, the reduced glutathione concentration decreased by 23.2% and 51.4% after 48 and 72h of treatment, respectively. In addition, an augmentation of the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione transferase and glutathione reductase within the interval between 48-72h was noticed. Taking into account that the reduced glutathione level decreased and the malondialdehyde level, a lipid peroxidation product, remained highly increased up to 72h of exposure, it would appear that the MRC-5 antioxidant defense mechanisms did not efficiently counteract the oxidative stress induced by exposure to hematite nanoparticles.
EN
Background: Head and neck neoplasms stand for 6% of all malignant neoplasms worldwide. Chemotherapy has limited use due to the biological properties of the tumor (in the majority of cases moderately and poorly differentiated squamous cell carcinoma). The fundamental molecule used in treatment is cisplatin and its derivates, that can be associated with fluorouracil. The new chemotherapeutic agents are not in common use during the treatment of head and neck malignancies. However, the use of low molecular weight complexes Pd (II) carries the potential of being more effective in therapy. Material and Methods: Fifty-one patients, 30 men and 21 women (aged 52.9 ± 12.1 years) with head and neck cancer were included in the study. Fifty-one healthy subjects, 31 men and 20 women, (aged 54.1 ± 14.7 years) years formed the control group. Antioxidant enzymes, superoxide dismutase, and catalase activities in erythrocytes were examined. Results: An increased level of antioxidant enzymes was seen in the blood samples from patients with head and neck cancer after incubation with Pd (II) complex. In the group we obtained a statistically significant result p = <0.001. Discussion: That project may contribute to the development of new, more efficient head and neck cancer treatment strategies. In our opinion, the results can be used in the future to develop a valuable prognostic marker of the disease. This is important because the initial phase of cancer is asymptomatic. The search for factors involved in pathogenesis translates into economic benefits and makes therapy more effectiveness through the reduction of treatment expenses.
EN
Background: Head and neck neoplasms stand for 6% of all malignant neoplasms worldwide. Chemotherapy has limited use due to the biological properties of the tumor (in the majority of cases moderately and poorly differentiated squamous cell carcinoma). The fundamental molecule used in treatment is cisplatin and its derivates, that can be associated with fluorouracil. The new chemotherapeutic agents are not in common use during the treatment of head and neck malignancies. However, the use of low molecular weight complexes Pd (II) carries the potential of being more effective in therapy. Material and Methods: Fifty-one patients, 30 men and 21 women (aged 52.9 ± 12.1 years) with head and neck cancer were included in the study. Fifty-one healthy subjects, 31 men and 20 women, (aged 54.1 ± 14.7 years) years formed the control group. Antioxidant enzymes, superoxide dismutase, and catalase activities in erythrocytes were examined. Results: An increased level of antioxidant enzymes was seen in the blood samples from patients with head and neck cancer after incubation with Pd (II) complex. In the group we obtained a statistically significant result p = <0.001. Discussion: That project may contribute to the development of new, more efficient head and neck cancer treatment strategies. In our opinion, the results can be used in the future to develop a valuable prognostic marker of the disease. This is important because the initial phase of cancer is asymptomatic. The search for factors involved in pathogenesis translates into economic benefits and makes therapy more effectiveness through the reduction of treatment expenses.
EN
INTRODUCTION: Although the exact etiology of rheumatoid arthritis (RA) remains unknown, there is increasing evidence that reactive oxygen species (ROS) and oxidant/antioxidant imbalance are an important part of the pathogenesis of joint tissue injury. MATERIAL AND METHODS: The activities of: manganese superoxide dismutase (MnSOD) and copper-zinc superoxide dismutase (CuZnSOD) isoenzymes, catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST), and malondialdehyde (MDA) levels were determined in blood and synovial fluid samples from 178 RA patients and from 27 healthy controls. RESULTS: The RA patients showed increased antioxidant enzyme activities and MDA levels. Decreased synovial fluid viscosity was associated with a tendency for a changed antioxidant system with increased antioxidant enzyme activities, thereby suggesting a possible adaptation to ROS production in the blood and synovial fluid in RA patients. CONCLUSIONS: Correlating antioxidant enzyme activities and MDA levels to disease activity might provide further information about oxidative stress in RA pathogenesis.
PL
WSTĘP: W patogenezie reumatoidalnego zapalenia stawów jednym z mechanizmów uszkadzających struktury stawu są reakcje z udziałem reaktywnych form tlenu (RFT). MATERIAŁ I METODY: U 178 pacjentów z RZS oraz 27 zdrowych ochotników oznaczono we krwi i płynie stawowym aktywność enzymów antyoksydacyjnych: izoenzymów dysmutazy ponadtlenkowej manganowej (MnSOD) i cynkowo-miedziowej (CuZnSOD), katalazy (CAT), peroksydazy glutationowej (GPX), reduktazy glutationowej (GR) i transferazy-S-glutationowej (GST) oraz stężenie dialdehydu malonowego (MDA). WYNIKI: We krwi i płynie stawowym pacjentów z RZS dochodzi do pobudzenia układu antyoksydacyjnego ze wzrostem aktywności enzymów antyoksydacyjnych, zwiększonym stężeniem MDA oraz spadkiem lepkości płynu stawowego. WNIOSKI: Zależność między nasileniem zmian w układzie antyoksydacyjnym a aktywnością zapalenia stawów potwierdza udział RFT w patogenezie i przebiegu RZS.
EN
This brief resume enumerates the multiple actions of melatonin as an antioxidant. This indoleamine is produced in the vertebrate pineal gland, the retina and possibly some other organs. Additionally, however, it is found in invertebrates, bacteria, unicellular organisms as well as in plants, all of which do not have a pineal gland. Melatonin's functions as an antioxidant include: a), direct free radical scavenging, b), stimulation of antioxidative enzymes, c), increasing the efficiency of mitochondrial oxidative phosphorylation and reducing electron leakage (thereby lowering free radical generation), and 3), augmenting the efficiency of other antioxidants. There may be other functions of melatonin, yet undiscovered, which enhance its ability to protect against molecular damage by oxygen and nitrogen-based toxic reactants. Numerous in vitro and in vivo studies have documented the ability of both physiological and pharmacological concentrations to melatonin to protect against free radical destruction. Furthermore, clinical tests utilizing melatonin have proven highly successful; because of the positive outcomes of these studies, melatonin's use in disease states and processes where free radical damage is involved should be increased.
EN
NTRODUCTION Hypokinesis may contribute to an increase in oxidative stress in muscle. Melato-nin has been known as a radical scavenger with the ability to remove reactive oxygen species and also is supposed to stimulate antioxidant enzymes including catalase (CAT) and glutathione peroxidase (GPx). The aim of the work was to determine the effect of melatonin supplementation on CAT and GPx activity in the red blood cells of patients with short- and long-lasting hypokinesis. MATERIAL AND METHODS The study group consisted of 33 patients with immobilization, divided into groups depending on hypokinesis duration: short-term immobilization – patients were administered melatonin (5 mg daily) for 10 days and long-term hypokinesis – patients were administered the same dose of melatonin for 30 days. The control group consisted of 17 subjects with normal physical activity, which received the hormone supplement for 10 and 30 days. RESULTS It was found that melatonin supplementation of immobilized patients did not affect CAT activity in either of the analysed groups in comparison to the control group. GPx activity in the group with short-lasting hypokinesis was higher than in the patients after 30 days of melatonin supplementation (p < 0.001). CONCLUSION The results indicate that melatonin supplementation in subjects with normal physical activity increases CAT and GPx activity regardless of the period of administration of the hormone. In the study groups, only in the patients with short-term hypokinesis, 10-day melatonin supplementation may induce increased activity of GPx.
PL
WSTĘP Hipokinezja może przyczynić się do wzrostu stresu oksydacyjnego w mięśniach. Melatonina, jako zmiatacz reaktywnych form tlenu ze zdolnością ich usuwania, być może wpływa na wzrost aktywności enzymów anty- oksydacyjnych, w tym katalazy (CAT) i peroksydazy glutationowej (GPx). Celem pracy była ocena wpływu suplementacji melatoniną na aktywność CAT i GPx w krwinkach czerwonych pacjentów z hipokinezją krótko- i długoterminową. MATERIAŁ I METODY Badaniem objęto 33 pacjentów poddanych ograniczeniu ruchowemu, podzielonych na grupy w zależności od czasu trwania hipokinezji: krótkoterminowa – pacjenci otrzymali melatoninę w dawce 5 mg/dobę przez 10 dni; długoterminowa – pacjenci otrzymali melatoninę w tej samej dawce przez 30 dni. Grupę kontrolną stanowiło 17 osób z prawidłową aktywnością fizyczną, suplementowanych melatoniną przez 10 i 30 dni. WYNIKI Wykazano, że suplementacja melatoniną pacjentów z ograniczeniem ruchowym nie miała wpływu na aktywność CAT w obu badanych grupach w porównaniu z grupą kontrolną. Aktywność GPx w grupie z krótkotrwałą hipo-kinezją była wyższa niż u pacjentów po 30 dniach suplementacji melatoniną (p < 0,001). WNIOSKI Wyniki badań wskazują, że suplementacja melatoniną osób z prawidłową aktywnością fizyczną wpływa na wzrost aktywności CAT i GPx niezależnie od okresu podawania hormonu. W grupach badawczych tylko u pacjentów z hipokinezją krótkoterminową przyjmowanie melatoniny mogło wpłynąć na wzrost aktyności GPx.
EN
WSTĘP: Choroba zwyrodnieniowa stawów kolanowych (gonartroza – GA) należy do najczęstszych schorzeń narządu ruchu, a ból i ograniczenie ruchomości kolana są najdotkliwiej odbieranymi przez pacjentów objawami zmian zwyrodnieniowych. Celem pracy było sprawdzenie, czy podanie dostawowe preparatu kwasu hialuronowego wpływa na funkcje stawu kolanowego, wybrane parametry układu antyoksydacyjnego i natężenie stresu oksydacyjnego we krwi u pacjentów z gonartrozą. MATERIAŁ I METODY: Grupa badana 1K obejmowała 96 pacjentów z chorobą zwyrodnieniową stawu kolanowego, którym podano kwas hialuronowy do jednego stawu kolanowego, natomiast do grupy badanej 2K włączono 33 pacjentów, którym podano kwas hialuronowy do obu stawów kolanowych. Badanie prowadzono przez 40 tygodni według ustalonego protokołu. Oznaczono całkowity status oksydacyjny (TOS) osocza, zawartość grup sulfhydrylowych (SH) w surowicy, aktywność katalazy (CAT) w erytrocytach, aktywność dysmutazy ponadtlenkowej (SOD) w osoczu i erytrocytach, aktywność peroksydazy glutationowej (GPx) w erytrocytach. WYNIKI: Po leczeniu wiskosuplementacyjnym odnotowano zmniejszenie nasilenia bólu oraz poprawę w badanych skalach VAS i HHS, przy czym nieco większą poprawę stwierdzono w przypadku zajęcia jednego kolana. Po leczeniu dostawowym kwasem hialuronowym stwierdzono znamienny spadek aktywności SOD oraz CAT a wzrost aktywności GPx, wzrost stężenia grup SH w obu grupach oraz spadek stężenia TOS. WNIOSKI: Wiskosuplementacja w chorobie zwyrodnieniowej stawu kolanowego istotnie redukuje ból kolana i poprawia jego funkcje oraz wywołuje korzystne zmiany w układzie antyoksydacyjnym krwi. Efekt leczenia jest porównywalny zarówno w przypadku podawania preparatu kwasu hialuronowego do jednego, jaki i do obu stawów kolanowych.
PL
INTRODUCTION: Osteoarthritis of the knee (gonarthritis – GA) is one of the most common musculoskeletal disorders. Pain and limitation of joint movement are the most constant and troublesome symptoms of the joint pathology. The aim of the study was to examine viscosupplementation therapy with hyaluronic acid. MATERIAL AND METHODS: 96 patients were administered hyaluronic acid unilaterally (the 1K group), while 33 patients were administered hyaluronic acid bilaterally (the 2K group) in a 40-day cycle. The stage of the disease was assessed based on medical history, physical examination and a questionnaire survey. Analysis of the following parameters was performed: serum level of sulfhydryl groups (SH), total oxidant status (TOS), catalase activities (CAT) and glutathione peroxidase (GPx) in erythrocytes and superoxide dismutase activity (SOD) in plasma and erythrocytes. RESULTS: Viscosupplementation resulted in pain reduction and improvement in the HHS score. The SOD and CAT activities were significantly decreased, while GPx activity as well as the SH level significantly increased in both the examined groups. In addition the TOS values significantly decreased. CONCLUSION: Viscosupplementation therapy with hyaluronic acid significantly reduces pain of the knee joint, improves its function and has a beneficial effect on the pro/antioxidant balance in the blood of patients diagnosed with GA. The effects of uni- and bilateral administration of hyaluronic acid are similar.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.