Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  adjuvant
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Our previous study showed the efficacy of lactoferrin-monophosphoryl lipid A isolated from Hafnia alvei LPS complex (LF-MPLH.a.) as an adjuvant in stimulation of humoral and cellular immune response in mice to conventional antigens and a lower pyrogenicity of the complex as compared with MPLH.a. alone. In the present investigation we demonstrated that LF-MPLH.a. complex enhanced the immunity of BALB/c mice immunized with Plesiomonas shigelloides CNCTC 138/92 bacterial vaccine, against P. shigelloides infection. The adjuvant effect was evidenced by a significant increase of the antigen-specific serum IgG, IgG2a, and IgG1 and elevation of antigen-specific serum IgA concentrations. In addition, application of the adjuvant facilitated better clearance of the bacteria in spleens and livers of infected mice when compared with MPLH.a. alone. These features of the new adjuvant may predispose it for vaccination protocols in humans.
2
100%
EN
The persistence of atrazine residues in soils may have an effect on the contamination of the ground water or surface water. Besides the active ingredients, pesticide formulations contain many other compounds called adjuvants. One of them is the Atpolan 80 EC which belongs to the group of oil mineral adjuvants used as tank-mix. The utilization of a fraction of paraffin oil 1113 is one of the examples of utilising waste as the component of Atpolan 80 EC in agriculture. When the Atpolan concentration comprised 1.25% (v/v), the atrazine degradation rate decreased in the sandy loam and muck soil. The half-life of atrazine increased over a period of 40 or 57 days, depending on the type of the soil. The least significant effect was caused by Atpolan concentration at 0.25 and 0.75%. This result points at the capability of limiting atrazine run-off and leaching down the soil profile. Each ingredient of the pesticide, besides having the overall ability to distribute between different phases, also demonstrates some single compound behaviour. This paper shows our current understanding of the factors that influence the adjuvant performance and their potentially complex interactions with the pesticide.
EN
The aim of the study was to determine immunostimulant properties of chitosan administered alimentary to BALB/c mice. We observed that chitosan feeding effected in activation of cells from the peritoneal cavity. The cells produced less nitric oxide with simultaneous enhanced activity of arginase and higher expression of receptor for IL-4. What is more, chitosan caused increased number of cells expressing MHC class II. The study confirms that chitosan can stimulate immune system what potentially makes it useful candidate for adjuvant.
6
Content available remote

DNA vaccines against influenza

75%
|
2014
|
vol. 61
|
issue 3
515-522
EN
Genetic vaccine technology has been considerably developed within the last two decades. This cost effective and promising strategy can be applied for therapy of cancers and for curing allergy, chronic and infectious diseases, such as a seasonal and pandemic influenza. Despite numerous advantages, several limitations of this technology reduce its performance and can retard its commercial exploitation in humans and its veterinary applications. Inefficient delivery of the DNA vaccine into cells of immunized individuals results in low intracellular supply of suitable expression cassettes encoding an antigen, in its low expression level and, in turn, in reduced immune responses against the antigen. Improvement of DNA delivery into the host cells might significantly increase effectiveness of the DNA vaccine. A vast array of innovative methods and various experimental strategies have been applied in order to enhance the effectiveness of DNA vaccines. They include various strategies improving DNA delivery as well as expression and immunogenic potential of the proteins encoded by the DNA vaccines. Researchers focusing on DNA vaccines against influenza have applied many of these strategies. Recent examples of the most successful modern approaches are discussed in this review.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.