Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 21

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  adhesion
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
The aim of this study was to determine the degree of adhesion and hydrophobicity of some strains of lactic acid bacteria (LAB) with proven antagonistic properties against pathogenic bacteria. Studies were performed using-LAB strains isolated from the gastrointestinal tract of calves and piglets. These strains exhibited an antibacterial activity against pathogenic strains of Clostridium perfringens and Escherichia coli. Cell adhesiveness was examined in relation to the porcine and bovine mucin. Our analyses had shown that the tested microorganisms demonstrated a degree of adhesion in the range of 32.00-40.00% for strains isolated from calves, and 34.00-40.00% for strains isolated from pigs. The hydrophobicity of tested bacteria was in the range of 31.00%-44.00% for strains isolated from pigs, and 26.00%-42.00% for strains obtained from calves. The best mucin adhesion ability was found for bacterial strains belonging to the Enterococcus genus isolated from calves. Taking into account porcine isolates, the best adhesion was observed for the Leuconostoc bacterial strains. Among tested strains, the highest hydrophobicity, measured in relation to hexadecane, was recorded for the bacterial strains belonging to the Leuconostoc sp. isolated from piglets and a of Lactobacillus sp. bacterial strain isolated from calves.
|
2002
|
vol. 49
|
issue 3
643-650
EN
Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the α2, a5 and β1 integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the β1 integrin subunit. Antibodies to α3 integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with colagen. It seems that α3 subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy.
Open Physics
|
2011
|
vol. 9
|
issue 4
1122-1130
EN
Mechanical tests of PVD coatings made on steel 310S were carried out within this study by the scratch test method. It was found that the additions of Al and Ir caused lower critical load values compared to the coating without additions. Despite the reduction of the critical load of the coating by the aluminium addition, the effect of aluminium was considered advantageous owing to the refinement of the structure causing the coating to become more plastic and reducing the number and sizes of micro-cracks. The addition of iridium results in an embrittlement of the coating structure and its poorer adhesion to the substrate. Comparison of the findings from the scratch test with the observations from an optical and a scanning microscopes was also made.
|
2005
|
vol. 52
|
issue 3
639-646
EN
The chaperone-usher system determines the biogenesis of surface-exposed adhesive structures responsible for virulence of many Gram-negative bacteria. Investigations of the last 20 years have resolved the mechanism of this pathway on a structural level for different species of pathogenic bacteria. The purpose of this review is to present the molecular mechanisms of the biogenesis of adhesive structures assembled via the chaperone-usher pathway. The obtained mechanistic data allow one to propose potential strategies of anti-bacterial action. Additionally, the specific properties of the polymeric adhesive structures (pili and fimbriae) of the chaperone-usher system allow their use as effective and safe recombinant vaccines carrying foreign epitopes in thousands of copies on bacterial cell surface.
EN
The ability to adhere to enterocytes is one of the key features of probiotics. This process involves a number of factors, among which the important role of pili was demonstrated. Some Lactobacillus species are confirmed to have heterotrimeric spaCBA type pili. The aim of this study was to identify spaCBA pili in strains of selected Lactobacillus spp. and assess the impact of their presence and sequence polymorphism on the adhesion of these strains to enterocytes. Total 20 bacterial strains of L. rhamnosus, L. casei and L. paracasei were tested. The presence of pilus specific proteins coding genes spaA, spaB and spaC was verified by PCR in order to identify the presence of sequence polymorphism in the genes possibly affecting the structure of the spaCBA pilus. To correlate spaCBA polymorphism to adhesion capability the adhesion assay was carried out using Caco-2 cell line. The effectiveness of the adhesion was measured using a scintillation counter. The Lactobacillus strains analyzed showed the adhesion to Caco-2 enterocytes capability from 0.6% to 19.6%. The presence of spaCBA pili is a factor increasing the adhesion efficiency of Lactobacillus spp. to Caco-2 enterocytes. Lack of these structures on the surface of bacterial cells results in the reduction in adhesion efficiency, indicating its important role in the adhesion process. But not in all cases the correlation between the presence of protein spaCBA structures and adhesion efficiency was observed, what may indicate the important role of other factors in adhesion of analyzed strains to Caco-2 cells.
|
2002
|
vol. 49
|
issue 2
303-311
EN
Neoplastic transformation is often associated with characteristic changes in the expression of the sialyl Lewisa and sialyl Lewisx antigens, representing typical tumor-associated carbohydrate antigens. High amounts of sialyl Lewisa are present in human adenocarcinomas of the colon, pancreas and stomach. A growing amount of data suggests that this carbohydrate structure is the ligand for E-selectin. Sialylated Lewis structures present on the surface of tumor cells are carried by the carbohydrate chains of glycoproteins and glycolipids. There are several lines of evidence showing that sialyl Lewisa is responsible for the adhesion of human cancer cells to endothelium. E-selectin present on endothelial cells mediates these interactions. Selectins and their carbohydrate ligands can thus play an important role in the selective homing of tumor cells during metastasis. However, the presence of sialyl Lewisa antigen on the surface of tumor cells and their adhesion to E-selectin-expressing cells in in vitro adhesion assay by itself can not be directly related to metastatic properties of all cancer cells.
7
88%
EN
Inverse gas chromatographic characterization of resins and resin based abrasive materials, polymerpolymer and polymer-filler systems, as well as dental restoratives is reviewed.
|
2006
|
vol. 53
|
issue 3
445-456
EN
Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is located within MID962-1200. In parallel, MID is stimulatory for B lymphocytes through the IgD B cell receptor. M. catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) are multifunctional outer membrane proteins that can bind complement and extracellular matrix proteins such as vitronectin and fibronectin. An interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and UspA1/A2 has also been observed. Moreover, UspA1/A2 has a unique feature to interfere with the innate immune system of complement by binding C3. Taken together, a growing body of knowledge on M. catarrhalis outer membrane proteins MID and UspA1/A2 and their precise interactions with the human host make them promising vaccine candidates in a future multicomponent vaccin.
|
2017
|
vol. 64
|
issue 2
323-329
EN
A number of factors are known to be involved in Candida albicans virulence, although biofilm development on the surfaces of indwelling medical devices is considered to promote superficial or systemic disease. Based on previously reported up-regulation of saccharopine and acetyllysine in biofilm cells and activation of the lysine biosynthesis/degradation pathway, we investigated the consequences of Candida albicans lysine auxotrophy on adhesion to host tissues and biofilm formation. Our data indicate that mutant strains lysΔ21/lysΔ22, defective in homocitrate synthase, and lysΔ4, defective in homoaconitase activity (the first two α-aminoadipate pathway enzymes), are able to adhere to mouse embryonic fibroblast cells (cell line NIH/3T3) to the same extent as a control strain SC5314. On the other hand, the auxotrophic mutant strains' development on mouse fibroblast monolayers was significantly reduced up to 5 h post infection. Although invasion into human-derived oral epithelial cells was unaltered, both mutant strains formed a significantly different biofilm architecture and demonstrated diminished viability during long term biofilm propagation.
|
2015
|
vol. 62
|
issue 4
713-720
EN
Many strains belonging to lactobacilli exert a variety of beneficial health effects in humans and some of the bacteria are regarded as probiotic microorganisms. Adherence and capabilities of colonization by Lactobacillus strains of the intestinal tract is a prerequisite for probiotic strains to exhibit desired functional properties. The analysis conducted here aimed at screening strains of Lactobacillus helveticus possessing a health-promoting potential. The molecular analysis performed, revealed the presence of a slpA gene encoding the surface S-layer protein SlpA (contributing to the immunostimulatory activity of L. helveticus M 92 probiotic strain) in all B734, DSM, T80, and T105 strains. The product of gene amplification was also identified in a Bifidobacterium animalis ssp. lactis BB12 probiotic strain. SDS-PAGE of a surface protein extract demonstrated the presence of a protein with a mass of about 50 kDa in all strains, which refers to the mass of the S-layer proteins. These results are confirmed by observations carried with transmission electron microscopy, where a clearly visible S-layer was registered in all the strains analyzed. The in vitro study results obtained indicate that the strongest adhesion capacity to epithelial cells (HT-29) was demonstrated by L. helveticus B734, while coaggregation with pathogens was highly diverse among the tested strains. The percentage degree of coaggregation was increasing with the incubation time. After 5 h of incubation, the strongest ability to coaggregate with Escherichia coli was expressed by T104. The T80 strain demonstrated a significant ability to co-aggregate with Staphylococcus aureus, while DSM with Bacillus subtilis. For B734, the highest values of co-aggregation coefficient was noted in samples with Salmonella. The capability of autoaggregation, antibiotic susceptibility, resistance to increasing salt concentrations, and strain survival in simulated small intestinal juice were also analyzed.
Open Physics
|
2011
|
vol. 9
|
issue 5
1379-1380
EN
The original version of the article was published in Central European Journal of Physics 9, 1122–1130 (2011), DOI: 10.2478/s11534-011-0005-8. Unfortunately, the original version of this article contains a mistake in Tab. 2. Here we display the corrected version of this table.
EN
Receptors of the β1 integrin family are involved in many tumor-promoting activities. There are several approaches currently used to control integrin activity, and thus to potentially restrain tumor metastasis and angiogenesis. In this study, we compared inhibitory efficiencies of siRNA and DNAzymes against the β1 integrin subunit (DEβ1), in a mouse xenograft model. Both inhibitors were used under their most favorable conditions, in terms of concentrations, incubation time and lack of cytotoxic effects. Transfection of siRNAβ1 or DEβ1 remarkably inhibited the growth of both PC3 and HT29 colon cancer cells in vitro, and decreased their capability of initiating tumor formation in the mouse xenograft model. siRNAβ1 appeared to be slightly more efficient than DEβ1 when tested in vitro, however it was comparably less proficient in blocking the tumor growth in vivo. We conclude the DNAzyme, due to its greater resistance to degradation in extra- and intracellular compartments, to be a superior inhibitor of tumor growth in long lasting experiments in vivo when compared to siRNA, while the latter seems to be more efficient in blocking β1 expression during in vitro experiments using cell cultures.
EN
The metastatic transformation of melanocytes is associated with altered expression of adhesion molecules, including αvβ3 and α3β1 integrins. Integrin αvβ3 is a primary vitronectin (VN) receptor, while both integrin types take part in adhesion to VN when they are in complex with uPAR. Although their role in melanoma cell interaction with VN is of great interest, the influence of N-oligosaccharides attached to these glycoproteins is still unappreciated. The present study assesses the role of αvβ3 and α3β1 integrins and the influence of their glycosylation status on WM9 and WM239 metastatic melanoma cell interactions with VN. Cell adhesion to and migration on VN were selected as the studied cell behaviour parameters. Functionblocking antibodies and swainsonine (SW) treatment were used in these tests. Both cell lines interacted with VN in an integrin-mediated but cell-line-specific manner. In WM9 cells, migration was not completely inhibited by antibodies against α3β1 or αvβ3 integrins, suggesting the participation of other VN receptors. In both cell lines in coprecipitation test the formation of an integrins/uPAR complex was shown. In the presence of SW formation of the complex did not occur, suggesting the participation of glycosylation in this proccess. Additionally, the adhesion properties of WM9 cells were changed after SW treatment. Our results suggest that in these two metastatic cell lines integrin-linked N-oligosaccharides influence the VN adhesion receptor activity and function.
EN
Candida tropicalis is one of the most frequent causes of serious disseminated candidiasis in human patients infected by non-albicans Candida species, but still relatively little is known about its virulence mechanisms. In our current study, the interactions between the cell surface of this species and a multifunctional human protein - high-molecular-mass kininogen (HK), an important component of the plasma contact system involved in the development of the inflammatory state - were characterized at the molecular level. The quick release of biologically active kinins from candidal cell wall-adsorbed HK was presented and the HK-binding ability was assigned to several cell wall-associated proteins. The predicted hyphally regulated cell wall protein (Hyr) and some housekeeping enzymes exposed at the cell surface (known as "moonlighting proteins") were found to be the major HK binders. Accordingly, after purification of selected proteins, the dissociation constants of the complexes of HK with Hyr, enolase, and phosphoglycerate mutase were determined using surface plasmon resonance measurements, yielding the values of 2.20 × 10-7 M, 1.42 × 10-7 M, and 5.81 × 10-7 M, respectively. Therefore, in this work, for the first time, the interactions between C. tropicalis cell wall proteins and HK were characterized in molecular terms. Our findings may be useful for designing more effective prevention and treatment approaches against infections caused by this dangerous fungal pathogen.
EN
The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether) glycol (PTMEG), as well as from two different isocyanates 4,4′-methylenebis(cyclohexyl)isocyanate (HMDI) and 4.4′-methylenebis(phenyl isocyanate) (MDI) in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.
EN
The influence of essential oils (EOs) used at sublethal level, on the presence and intensity of Candida albicans virulence factors was evaluated. Minimal inhibitory concentrations (MICs) of Lemon balm, Citronella, Geranium and Clove oils were established as 0.097% (v/v). Using the agar plates with substrates for proteases, phospholipases and hemolysins it was shown that C. albicans ATCC 10231 and C. albicans ATCC 90028 strains differed in the type and amount of enzymes produced. No significant difference in their total amount could be detected after pretreatment for 24 h with EOs at ½ MIC. However, the short-term (1 h) acting oils at MIC caused a statistically significant reduction in this activity. In the API ZYM test it was demonstrated that both strains exhibited activity of the same 9 out of 19 enzyme types and that EOs caused a significant decrease in the release of some of them. In the presence of subMIC of EOs, or when the fungus had previously been exposed to the MIC of oil, germ tubes formation was significantly and irreversibly reduced. Such C. albicans spotted on the Spider agar containing EOs at subMICs were unable to penetrate the agar. A significant decrease in the C. albicans adhesion to the fibroblast monolayer with respect to controls was also demonstrated when yeasts had been exposed to EOs at MIC (1 h) in liquid medium. Thus, it has been shown that tested oils, used even at subMIC, exhibit significant activity reducing the presence/quantity of important C. albicans virulence factors.
EN
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.