Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  X-ray crystallography
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2(1); (Me2GaOSitBuMe2)2(2); (Me2GaOSiEt3)2(3); (Me2InOSiPh3)2(4); (Me2InOSitBuMe2)2(5); (Me2InOSiEt3)2(6); (Me2GaSSiPh3)2(7); (Et2GaSSiPh3)2(8); (Me2GaSSiiPr3)2(9); (Et2GaSSiiPr3)2(10); (Me2InSSiPh3)3(11); (Me2InSSiiPr3)n(12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)–(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)–(10) GaS and (11)–(12) InS powders, respectively. [...]
EN
9-Bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6-ylhydrazine was reacted with 2-acetylpyridine to give a Schiff base as a potential tridentate ligand. The reaction of this ligand with gallium chloride afforded complexes of 1:1 and 2:1 stoichiometry. The results of X-ray diffraction studies of the ligand and both gallium complexes are reported and compared with the data for a related gallium complex with a Schiff base obtained from 9-bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6-ylhydrazine and 2-hydroxybenzaldehyde. [...]
EN
Conformational preferences of Ac-ΔAla-NMe2 and Ac-(Z)-ΔPhe-NMe2 were studied and compared with those of their monomethyl counterparts as well as with those of their saturated analogues. X-Ray data and energy calculations revealed a highly conservative conformation of the dehydro dimethylamides, which is located in a high-energy region of the Ramachandran map.
EN
The crystal structure of Ac-ΔVal-NMe2 (ΔVal = α,β-dehydrovaline) was determined by X-ray crystallography. The found angles φ = -60° and ψ = 125° correspond exactly to the respective values of the (i + 1)th residue in idealised β-turn II/VIa. Ab initio/DFT studies revealed that the molecule adopts the angle ψ restricted only to about |130°| and very readily attains the angle φ = about -50°. This is in line with its solid-state conformation. Taken together, these data suggest that the ΔVal residue combined with a C-terminal tertiary amide is a good candidate at the (i + 1)th position in a type II/VIa β-turn.
5
Content available remote

Directionality of kinesin motors.

63%
|
2002
|
vol. 49
|
issue 4
813-821
EN
Kinesins are molecular motors that transport various cargoes along microtubule tracks using energy derived from ATP hydrolysis. Although the motor domains of kinesins are structurally similar, the family contains members that move on microtubules in opposite directions. Recent biochemical and biophysical studies of several kinesins make it possible to identify structural elements responsible for the different directionality, suggesting that reversal of the motor movement can be achieved through small, local changes in the protein structure.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.