Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Wastewater
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The ionic liquid based vortex-assisted liquid-liquid microextraction (IL-VALLME) procedure was developed and validated for determination of four pesticides in a manufacturing wastewater sample: acetamiprid, imidacloprid, linuron and tebufenozide. The following ILs were tested as extractants: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-hexyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium hexafluorophosphate. The extraction efficiency and the enrichment factor dependencies on the type and amount of ionic liquids, extraction and centrifugation time, volume, pH and the ionic strength of the sample, were investigated. The concentration of pesticides in the aqueous and IL phases was determined by HPLC-DAD. The optimal conditions for extraction of the pesticides were determined: the aqueous sample volume of 10 mL with the addition of 0.58 g NaCl, 40 µL of the 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as extractant, 2 min extraction under vigorous mixing applying the vortex agitator, and separation of the phases by centrifugation for 2 min at 1000 rpm. The calibration curves of the pesticides showed good linear relationship (r2 ≥ 0.9996) in the concentration range from 0.005 to 1.00 mg L−1. Determined LOD values are 1.8, 2.3, 4.8 and 8.6 µg L−1 for Tebf, Linr, Acet and Imid, respectively. The optimized IL-VALLME was applied for determination of the pesticides in the pesticide manufacturing wastewater. [...]
EN
In the present work, a new SiO2/TiO2/Ce, nanoparticle was synthesed using sol-gel method and evaluated as an adsorbent for preconcentration trace amounts of Pd(II) ions. The characterization of the nanoparticles has been studied by transmission electron microscope and X-ray diffraction. The preconcentration method is based on palladium adsorption onto the surface of nanoparticle at pH 8.5. The main factors affecting Pd(II) adsorption, such as pH of sample solution, concentration and volume of eluent, sample volume, interfering of the coexisting ions and flow rate of sample and eluent were investigated and optimized. At optimum conditions, linearity was maintained between 4.0 to 1000.0 ng mL−1. Detection limit based on 3Sb/m was 2.3 ng mL−1. Seven replicate determinations of a solution containing of 12.5 µg palladium gave a relative standard deviation ±1.7%. According to the Langmuir linear model, the maximum adsorption capacity of palladium was found to be 34.5 mg g−1. Finally, the feasibility of the proposed method for Pd(II) determination was assessed by analysis of certified reference materials, anodic slime and wastewater samples and satisfactory results were obtained. [...]
3
100%
EN
The possibility of potential application of membrane distillation for the concentration of waste salt solutions has been presented in this work. It was found that the oxidation of iron compounds takes place during the process that was associated with the formation of a layer of oxides on the membrane surface. A fast decline of the permeate flux was observed due to the scaling phenomena. The problem of scaling was eliminated by the acidification with H2SO4 of the feed to the pH value of 2.
EN
Poor sanitation systems have been a significant contributor to high death rates in many low-income countries since they tend to promote the spread of waterborne diseases. Both the public and commercial sectors have a strong interest in developing and upgrading the health systems in these countries. Chemical oxidants that are commonly used (e.g., chlorine) signify the method most commonly used to disinfect wastewater due to some practical rewards. Nevertheless, a lot of evidence shows that harmful by-products of disinfection (DBPs) have a direct link to DBP generation. This research investigates the use of UV-LEDs to sterilize the secondary household sewage treatment system. Though UV-LED treatment has grown in popularity recently, it is still a cutting-edge method for treating domestic sewage. Domestic sewage was pretreated via an affordable pretreatment structure containing a settler inclined at an angle and a sand-medium screen before being fed into a novel flow-through ultraviolet LED reactor. Reusing processed wastewater from treatment plants that use UV-based combination processes shows outstanding potential due to a negligible impact on the environment relative to disinfection byproducts generation and effective microorganism-based disinfection at high yields, but more research is needed to confirm this (more than a three-log reduction is typical).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.