Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 13

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Titanium
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Thick (400 µm) glow-discharge nitrided layers, TiN+Ti2N + αTi(N) type, have been produced on the Ti-1Al-1Mn titanium alloy. Using a progressive thinning method, the polarization characteristics at different depths of nitrided layers have been measured. From the plots of obtained potentiodynamic polarization curves the depth profiles of characteristic anodic and cathodic currents (at potentials corresponding to (a) hydride formation, (b) hydrogen evolution, (c) primary passivation, (d) oxygen evolution and (e) secondary passivation) as well as polarization resistance have been determined in 0.5 M Na2SO4 solution acidified to pH = 2. The anomalously high slope of the polarization curves in the cathodic region has been ascribed to the formation of titanium hydride. It has been shown that outer nitrided layers (up to 25 µm) exhibit excellent acid corrosion resistance owing to strong inhibition of the anodic process by TiN phase. Corrosion resistance of deeper situated layers gradually decreases and at depths of 250–370 µm the corrosion process is accelerated by presence of TiO2 precipitations. Nitrided layers, unlike the alloy core, allow oxygen evolution on the oxy-nitrided surface at potential of +1.6 V and at more positive potentials gradual transformation of the surfacial film into TiO2 takes place. Secondary passivation on nitrided titanium is less efficient than that in the absence of Ti-N species. [...]
EN
In this work, the alkali roasting of ilmenite (FeTiO3) is presented as a process route for integrated beneficiation of the mineral for rutile-rich phase and rare earth oxides; the latter is released as a consequence of physical changes in the ilmenite matrix, during the water leaching after roasting. The oxidative alkali roasting transforms ilmenite mineral into water-insoluble alkali titanate and water-soluble ferrite. After roasting the insoluble alkali titanate is separated from rare-earth oxide mixture in colloidal form and water-soluble ferrite. Further leaching of alkali titanate is carried out with oxalic (0.3M) and ascorbic (0.01M) acid solution which removes the remaining Fe2+ ions into the leachate and allows precipitation of high-purity synthetic rutile containing more than 95% TiO2. Iron is removed as iron oxalate. The physico-chemical changes occurred during the roasting and leaching processes are reported by comparing the role of alkali on the roasting process and product morphologies formed.
EN
Abstract Phase equilibria was investigated in the Ti-Fe-P system at T = 1070 K in the region 0–67 at.% of P, employing X-ray powder diffraction. The two ternary compounds, namely Ti0.5–0.8Fe1.5−1.2P (Co2Si-type; space group Pnma; a = 0.5964(2)–0.6011(3), b = 0.3575(3)–0.3600(1), c = 0.6828(2)–0.6882(2) nm) and Ti0.85−1.25Fe1.15−0.75P (ZrNiAl-type; space group P-62m; a = 0.6071(4)–0.6117(1), c = 0.3510(9)–0.3506(1) nm) exist in the Ti-Fe-P system at this temperature. The crystal structure of the Ti0.85–1.25Fe1.15−0.75P compound was additionally determined by X-ray single crystal diffraction on the phase with stoichiometric composition. The substitutions of Ti by Fe were observed for Ti5P3.16, Ti3P and TiP phases, and Fe for Ti in the case of Fe3P, Fe2P binary compounds. Graphical abstract [...]
EN
A multi-element analytical method based on inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed for trace elements in pharmaceutical tablets and cosmetics. Titanium was also included in the analytes since it is widely used in pharmaceuticals. Critical ICP conditions, like RF incident power, argon gas flow rate and nebulizer sample uptake flow rate were optimized. The most sensitive spectral line of each analyte was selected as optimum for further study. Detection limits in the low µg g−1 range were obtained. Prior to chemical analysis, the samples were decomposed by acid digestion, using various mixtures of HCl, HNO3 and HF. Yttrium was used as a suitable internal standard in order to correct for possible matrix effects. The method was applied to the analysis of six different pharmaceutical products (anti-biotic, anti-inflammatory, anti-hypertensive) in the form of tablets with film coating and also three cosmetic products like hair and face masks.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.