Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Titanate nanotubes and TiO2 anatase
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Hydrogen titanate nanotubes (H-TTNT) were synthesized by the alkali hydrothermal method followed by proton exchange and then submitted either to thermal treatment or to acid hydrothermal reaction to generate TiO2-anatase nanocrystals of different morphologies. The samples were characterized by XRPD, TGA, sulfur analysis, N2 physisorption, UV-Vis spectroscopy and TEM. Their photocatalytic activities were determined by measuring the NO conversion in inert gas stream passed through the powder catalyst bed under UV radiation. Incomplete transformation into anatase resulted in nanomaterials with low activity due to coexistence with H-TTNT or TiO2-B precursors. Anatase specimens derived from H-TTNT aged in strong sulfuric acid media contained equidimensional nanoparticles, but retention of sulfate negatively affected their photocatalytic activity. Combining milder acidic pH with higher aging temperature, allowed synthesis of a sulfate free anatase with the same optical properties and specific surface area as the counterpart produced by calcination of H-TTNT at 550°C; however, the former exhibited truncated bi-pyramid nanocrystals and the other adopted the form of nanorods. This latter showed the highest photocatalytic activity for NO abatement, outperforming the benchmark photocatatyst TiO2-P25; this improved activity was tentatively ascribed to the maximization of high energy {001} facets in anatase nanorods formed during calcination of H-TTNT. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.