Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  TRNA
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Accurate codon recognition by tRNAs is necessary for correct translation of mRNA nucleotide sequence into the protein sequence. Here, different factors contributing to the correct codon reading by tRNAs are reviewed. In particular, the monitoring of codon-anticodon helix geometry by 16S rRNA bases, and the role of tRNA sequence elements and posttranscriptional modifications for modulating codon-anticodon interactions are discussed.
EN
Abstract. tRNA has been discovered as a factor playing a central role in the translation of genetic information (encoded in DNA and transcribed to mRNA) into amino acid sequences of proteins. However, subsequent studies led to the hypothesis that during evolution, tRNA originated in replication, not translation. Indeed, there are many examples of tRNA-like molecules playing roles in reactions other than translation, including replication of various replicons. In this review, we have focused on functions of tRNA molecules (not tRNA-like structures) outside of their direct roles in translation as factors for a passive transportation of amino acids into a ribosome and deciphering triplets of nucleotides in codons of mRNA. Interestingly, it appears that such tRNA-dependent reactions are effective only when tRNA is uncharged. The most spectacular examples come from bacterial cells and include induction of the stringent control, regulation of transcription of some operons, and control of replication of ColE1-type plasmids. Recent studies indicated that tRNA (not only pre-tRNA, shown previously to be capable of self-excision of intron sequences) can be responsible for specific cleavage of another transcript, a ColE1 plasmid-encoded RNA I, which is involved in the regulation of plasmid DNA replication initiation. If this reaction is not restricted to RNA I but represents a more general phenomenon, one might suspect a potential role for uncharged tRNA molecules in regulation of various processes, whose efficiency depends on tRNA-cleavable RNAs. This kind of regulation would provide a possibility for a cell to respond to different nutrition conditions resulting in different levels of tRNA aminoacylation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.