Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Surface
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
TiO2, Fe2O3, CuO, ZnO, ZnS, Nb2O5, MoO3, CdO, CdS, Sb2O3, CeO2, HgO, Pb2O3, PbO2 and Bi2O3 microparticles exhibit band gap excitation with UV-A light but they are selective to photodegrade phenols. While TiO2 anatase and ZnO photocatalyze the degradation of phenol, o-aminophenol, m-aminophenol, p-aminophenol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-nitrophenol, p-nitrophenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol and quinol, MoO3 does not photodegrade any of the fifteen phenols. Fe2O3, CuO, ZnS, Nb2O5, CdO, CdS, Sb2O3, CeO2, HgO, Pb2O3, PbO2 and Bi2O3 are selective in photodegrading the fifteen phenols; however, the phenols get adsorbed over all sixteen particulate semiconductors. [...]
2
Content available remote

Surface diffusion of Pb on clean Si surfaces

72%
EN
Pb diffusion on clean Si(111), (100), and (110) surfaces was studied by Auger electron spectroscopy and low energy electron diffraction in the temperature range from 100 to 300°C. It is shown that lead transport along sillicon surfaces takes place via the mechanism of solid-phase spreading with a sharp moving boundary. The temperature dependence of the Pb diffusion coefficients on Si(111), (100) and (110) surfaces have been obtained. A Si(110)-4×2-Pb surface structure has been observed for the first time.
3
Content available remote

Ge diffusion on Si surfaces

72%
Open Physics
|
2006
|
vol. 4
|
issue 3
310-317
EN
Ge diffusion on Si(100), (111), and (110) surfaces has been studied by Auger electron spectroscopy and low energy electron diffraction in the temperature range from 600 to 800 °C. Surface diffusion coefficients versus temperature have been measured.
4
Content available remote

Mechanism of Cu transport along clean Si surfaces

58%
EN
Cu diffusion along clean Si(111), (110) and (100) surfaces are investigated by Auger electron spectroscopy and low energy electron diffraction. The effective diffusion coefficients of copper are measured in the temperature range from 500 to 650°C. It is shown that the Cu transport along silicon surface occurs by the diffusion of Cu atoms through Si bulk and the segregation of Cu atoms to the surface during the diffusion process. It is found that the segregation coefficients of Cu to silicon surface during the diffusion process depend on surface orientation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.