Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Subchronic intoxication
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Chlorfenvinphos is an organophosphate insecticide, posing a risk to those who are professionally involved in its production and use in agriculture, as well as to the general population. Organophosphates (OPs) are the class of insecticides, whose primary target is acetylcholinesterase (AChE) that hydrolyzes acetylcholine, a major neurotransmitter at the central and peripheral neuronal synapses. Moreover, many authors postulate that these compounds, both in acute and chronic intoxication, change the activities of antioxidative enzymes, thus leading to the enhancement of lipid peroxidation in many tissues. In the current study, animals received once a day, intragastrically with a stomach tube, 0.1ml/100g of olive oil (control groups) and oil solution of chlorfenvinphos at a dose of 0.02LD50 (0.3 mg/kg b. w.) - the experimental groups. The animals were sacrificed on day 14 or on day 28 of exposure. In the kidneys of rats, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) as well as reduced glutathione level (GSH) were determined. Chlorfenvinphos administration resulted in increased activities of antioxidative enzymes in the kidney of rats. Renal activities of SOD, GPx and GR were more pronounced on day 28 of chlorfenvinphos exposure than on day 14. The kidney reduced glutathione level (GSH) did not change in comparison to the control level. The current experimental findings indicate that subchronic administration of chlorfenvinphos leads to an adaptive response in the kidney of rats and this response is mostly due to reduced glutathione level and glutathione metabolism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.