Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  SEQUENCE ANALYSIS
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Three low-molecular-weight glutenin subunit (LMW-GS) genes, designated LMW-Td1, LMW-Td2 and LMW-Td3, were isolated from wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of common wheat (T. aestivum). The complete nucleotide sequence lengths of LMW-Td1, LMW-Td2 and LMW-Td3 are 858, 900 and 1062 bp, respectively. LMW-Td1 and LMW-Td3 can encode proteins with 284 and 352 amino acid residues, respectively, whereas LMW-Td2 is a putative pseudogene due to the presence of 3 inframe stop codons in its C-terminal domain. The deduced protein sequences of the 3 genes share the same typical polypeptide structures with known LMW-GS genes containing 8 cysteines in the mature protein domains. LMW-Td1 was clearly distinguished from all known LMW-GS genes, and considered as a novel LMW-GS gene. Two hydrophobic motifs (i.e. PIIIL and PVIIL) were observed in the repetitive domain of LMW-Td3. Sequence comparison indicates that sequences of the 3 LMW-GS genes from this study are strongly similar to known LMW-GS genes. Our phylogenetic analysis suggests that LMW-Td1 and LMW-Td2 are homologous with genes on chromosome 1A, and LMW-Td3 is closely related to genes on chromosome 1B.
EN
The nature of somaclonal variation at the nucleotide sequence level was studied in rice cv. Nipponbare. First, we investigated genomic variations by using 2 molecular marker systems: RAPD (random amplified polymorphic DNA) and ISSR (inter-simple sequence repeat). This was followed by sequencing of selected bands that represented genomic variations, and pairwise sequence analysis taking advantage of the whole genome sequence of rice. In addition, transpositional activity of the active MITE, mPing, was analysed by locus-specific PCR amplifications. The 2-year-old calli and their regenerated plants, analysed with 24 RAPD and 20 ISSR primers, showed moderate levels of genomic variation (20.83% and 17.04%, respectively). To test whether DNA methylation plays a role in somaclonal variation, the calli were treated with 5-azacytidine, a chemical agent that reduces cytosine methylation by blocking the activity of DNA methyltransferase. Though dwarfism occurred in regenerants from treated calli (a hallmark of the drug treatment), there was only a slight increase in the frequency of somaclonal variation detected in the treated calli and their regenerated plants relative to untreated controls. The transposon mPing also remained immobile in both treated and untreated calli. Nevertheless, dendrograms constructed according to the Jaccard coefficient calculated by UPGMA of the ISSR bands revealed that the 5-azacytidine-treated and untreated somaclones were grouped into 2 distinct clusters, suggesting a possible indirect effect of the treatment on the genomic changes, depending on the marker used. Sequence analysis indicated a low level of variation (0.31%), with single-base-pair substitutions predominating.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.