Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Rhodium
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2012
|
vol. 10
|
issue 1
256-266
EN
The reaction rate of the oxidative addition and CO insertion steps of methyl iodide with [Rh(PhCOCHCOPh)(CO)(P(OCH2)3CCH3)] are presented. Large negative experimental values for the activation entropy and results from a density functional theory computational chemistry study indicated trans addition of the CH3I to [Rh(PhCOCHCOPh)(CO)(P(OCH2)3CCH3)]. A study of the molecular orbitals gives insight into the flow of electrons during the oxidative addition reaction. CO insertion leads to a square pyramidal [Rh(PhCOCHCOPh)(P(OCH2)3CCH3)(COCH3)(I)] acyl product with the COCH3 moiety in the apical position. The strong electron donation of the P(OCH2)3CCH3 ligand accelerates the oxidation addition step of methyl iodide to [Rh(PhCOCHCOPh)(CO)(P(OCH2)3CCH3)] by ca. 265 times faster (at 35°C) than that of the Monsanto catalyst, but inhibits the CO insertion step.
EN
Rhodium is build into a nano-structured calcium silicate during the synthesis of the silicate. Thereby, it was desired to create a robust heterogeneous catalyst, which does not suffer from catalyst leaching like rhodium impregnated on a pre-formed silicate. While this was achieved, the silicate structure was adversely affected by the incorporation of rhodium - the surface area and pore volume of the material were found to be comparatively low. Alcohol and acid washing were tested to address this issue. The alcohol treatment proved detrimental as catalytic material was leached from the silicate. The acid washed rhodium containing calcium silicate was quite active in the hydroformylation of alkenes and did not suffer loss of catalyst into the product phase. Acid treated rhodium containing silicates were more active than their untreated counterparts but less selective due to access to the rhodium centers being opened. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.