Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Remediation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We investigated the efficiency of maize biomass parts - seed chaff, stalk, cob and husk, in the remediation of Cu2+ ion polluted water in modeled solutions. The adsorption capacity of these parts followed the order of husk > stalk > cob > seed chaff, with values of 9.65 mg/g, 4.83 mg/g, 3.70 mg/g and 2.48 mg/g, respectively. Maximum adsorption capacity of each part was reached in 45 min. Herein, the husk giving the best removal efficiency of 80.80%. Characterization of the maize husk using PIXE showed that potassium is the main cation on this biomass, with concentration 5.602 g/kg. FTIR scans of the husk before and after adsorption of Cu2+ ions gave shifts in adsorption bands on -OH carrying molecules, indicating that complexation is a mechanism in the metal ion removal process. The multi porous structure of the husk, and uniform surface coverage by ions observed from SEM images before and after adsorption, shed more light on the high adsorption efficiency shown by this natural waste material.
EN
Novel Calix[4]arene Netwok (NCN) resin has been synthesized using Amberlite XAD-2 as the starting material. Hydroxyl groups have been introduced onto the para position of alkylated phenyl ring of Amberlite XAD-2 followed by the condensation to NCN by reacting it with formaldehyde. The NCN resin has been used for the remediation of Cr(VI) contaminated water using factorial design approach. A face-centered Draper-Lin composite design predicted ~100% removal effi ciency at optimum variables (the initial concentration of Cr(VI) ion 10 mg/l sorbent dose 200 mg, agitation time 136 min and pH 2). The accuracy and the fi tting of the model were evaluated by ANOVA and R2 (0.9992) values. The 99.5% removal effi ciency has been achieved experimentally at the optimum values of the variables. The Langmuir and D-R isotherm models were applicable to the sorption data with the value of RL and the sorption free energy 0.0057-0.1 and 7.93 kJ/mol respectively, suggesting favorable and physical/ion-exchange nature of the sorption. The calculated sorption capacity was 176.1±2.4 mg/g. The recycling studies of NCN resin showed that the multiple use of resin is feasible. Effect of concomitants has also been studies and proposed method was applied successfully for removal (98.7%) of Cr (VI) from electroplating wastewater.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.