Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  Particle size distribution
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

The study of rutile pigments Ti1−3x CrxM2x O2

100%
EN
Abstract This study deals with rutile pigments of type Ti1−3x Crx M2x O2 (where M = Sb, W and x = 0, 0.05, 0.10, 0.20, 0.30, 0.50) prepared by solid state reaction. Chromium is the chromophore (coloring ion); antimony and tungsten are added for achieving electroneutrality. The effect of doping elements (M = Sb, W), calcination temperature (850, 950, 1050, 1150°C) and composition (x = 0, 0.05, 0.10, 0.20, 0.30, 0.50) on color properties, particle size and electrokinetic (zeta) potential was observed. The optimal conditions for synthesis of these rutile pigments are Sb2O3 as raw material, calcination temperature 1050°C and composition x = 0.20 (Ti0.4Cr0.2Sb0.4O2). This orange-green pigment has high stable dispersion (ζ = −43.81 mV) and good color properties (chroma C = 39.50). However, brightly orange pigment Ti0.85Cr0.05W0.10O2 (x = 0.05) synthesized at temperature 1050°C gives “the finest” color with higher chroma (C = 49.48), but less stable dispersion (ζ = −37.32 mV). In light of phase composition, the optimal calcination temperature is 1150°C. Graphical abstract [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.